E3多路复用/解复用的多时钟设计方案

电子设计 2018-12-03 16:49 次阅读
FPGA设计的第一步是决定需要什么样的时钟速率,设计中最快的时钟将确定FPGA必须能处理的时钟速率。最快时钟速率由设计中两个触发器之间一个信号的传输时间P来决定,如果P大于时钟周期T,则当信号在一个触发器上改变后,在下一个逻辑级上将不会改变,直到两个时钟周期以后才改变,如图1所示。 E3多路复用/解复用的多时钟设计方案
    
  传输时间为信号在第一个触发器输出处所需的保持时间加上两级之间的任何组合逻辑的延迟,再加两级之间的布线延迟以及信号进入第二级触发器的设置时间。无论时钟速率为多少,每一个FPGA设计所用的时钟必须具有低抖动特性。抖动S是触发器的一个时钟输入到另一个触发器的时钟输入之间的最大延迟。为使电路正常工作,抖动必须小于两个触发器之间的传输时间。
E3多路复用/解复用的多时钟设计方案 图二 图2显示了如果抖动大于传输时间(S>P)将出现的情况,该电路用时钟的两个上升沿来延迟信号1。然而,信号1上的一个改变会在相同的时钟周期上传输到的信号3上,从而引起信号2的改变。因为S>P,电路将不能不正常。 
     
  须注意的是,时钟速率与传输延时并没有什么关系,甚至普通的100bps时钟也会出现抖动问题。这意味着虽然FPGA供应商宣称他们的芯片具有较短的传输时间和很高的时钟速率,但抖动问题可能会严重,甚至那些没有运行在最高速率上的设计也是如此。
     
  好在FPGA供应商已经认识到时钟抖动的影响,并在他们的芯片中提供低抖动的布线资源。这些特殊的布线能够在芯片中一个给定范围内的任何两个触发器之间提供一个确定的最大抖动。部分产品的低抖动资源覆盖了整个芯片,而其它的则可能只覆盖了FPGA逻辑块中的一个特定的行或列。对于一个需要很多不同时钟源的设计,这些低抖动FPGA是比较理想的选择。
     
  多时钟设计的最严重问题之一是用异步时钟将两级逻辑结合在一起。由于异步时钟会产生亚稳态,从而严重降低设计性能,或完全破坏设计所能实现的功能。在触发器的时序要求产生冲突时(设置时间和保持时间)将产生亚稳态,触发器的最终输出是未知的,并使整个设计处于不确定状态。如果有一级逻辑要将数据异步地发送到另一级,图3所示的情形将不能满足触发器的设置和保持时间要求。确切地说,如果设计中含有异步逻辑将有可能会产生亚稳态。在处置异步资源时必需非常小心,因为这可能产生一些很严重的问题。
E3多路复用/解复用的多时钟设计方案 图三

多时钟设计

      
  本文以电信应用中的E3多路复用/解复用设计为例。如图4所示,多路复用器接收来自一组独立线路接口芯片的16个独立E1信道,每一个信道都工作于2.048MHz;经复用后,这些E1流组合成4个E2流,分别工作在8.0448MHz;4个E2流最后组合成一个E3流,以34.368Mbps的速率串行发送出去。在接收端执行相反的操作:解复用器从E3流提取4个E2数据流,然后从E2流提取16个E1流,最终将E1流发送到接收端的线路接口芯片。
E3多路复用/解复用的多时钟设计方案 图四
     
  这些E1线路接口在发送和接收时都独立工作,因此2.048MHz的时钟速率可以有+/- 20ppm的偏差。同样,因为大多数系统同时发送和接收数据,分立的多路复用器和多路解复用器将提供2个独立的E3流(发送和接收)。因此,两个34.368MHz的时钟可以存在细微的差异。
     
  由于E2流是在芯片上产生的,这些E2多路复用器可以共享同一个8.448MHz时钟。然而,由于接收的数据速率与我们所设计的板无关(且不能假定所有E2多路复用器使用相同时钟),所以E2解复用器时钟必须能工作在略为不同的速率下。
     
  此外,假定设计中需要一个由工作频率为1MHz的处理器控制的独立SPI(串行外围接口)总线接口,该接口用于状态和控制。这样一来,设计中总共用了32个2.048MHz时钟,5个8.448MHz时钟,2个34.368MHz时钟和一个1MHz时钟,总共多达40个时钟。
     
  本设计中最快时钟是34.368MHz E3时钟。FPGA的最大时钟速率的确定很重要,因为设计的差异将影响到该最大值。然而,在芯片商的资料手册中常常可以看到“全局时钟设置及保持时间”和“至CLB输出的时钟”两个参数,将这两个参数的最大值相加,再增加25%就能可以得到最小时钟周期的初略值,在最大时钟速率条件下允许10%的余量,以保证过热条件下能正常工作。因此,我们设置的最小速率为40MHz,很多较新的FPGA都能够很容易地支持该频率。事实上,FPGA供应商已经推出了超过300MHz的器件。
     
  在确定了能满足最大频率要求的FPGA后,就需要保证有足够的空间来实现你的设计。如果所选的FPGA没有足够的余量,就不能提供足够的布线资源来满足设计的时序约束。通常芯片供应商宣称的速率是最佳条件下的速率,FPGA供应商一般建议FPGA逻辑在布线功能开始明显变差以前可以用到80%。在选择FPGA器件时,建议在新的设计时最好使FPGA逻辑用到50%左右,这样就允许计算起始设计大小出现超差,以及为在设计起动后产生不可避免的设计变更留出空间。如果最终的设计只占用低于50%的资源,则可以使用同一系列中较小的FPGA以降低成本。
     
  通过时序约束来规定慢时钟速率,从而可以改进设计中最快时钟的布线。在多路复用器例子中,如果设置FPGA布线工具SPI总线时钟为1MHz,而E3时钟为40MHz,布线工具将尽量使E3时钟的逻辑电路模块相邻布局。如果由于空间的限制而不能将全部电路布局在一起,则首先应将SPI逻辑另外布局,因为SPI逻辑可以处理更长传输延迟。所有FPGA供应商的布线工具都能规定这些较慢时钟速率。
减少时钟数量
     
  根据市场调查,目前还没有哪个FPGA器件能够支持这种多路复用器/解复用器设计所需的40个时钟。所以,我们必须减少所需要的时钟数。
      
  首先了解E2和E3多路复用器的时钟。前面已经分析了4个E2多路复用器工作在相同时钟下的可接受度,E3多路复用器运行于比E2时钟高得多的速率,必需使用一个不同的时钟。但是,如果我们从E3时钟中引出E2时钟是否可行呢?因为E3多路复用器要从每个E2支路得到数据,我们可以在需要E2多路复用器给我们数据时,简单地将脉冲送给每个多路复用器。我们没有去掉任何时钟,但E2时钟现在是基于E3时钟。
 
  如果在所有的多路复用器中也使用同样的时钟,并且只使用一个使能信号来告诉E2多路复用器什么时候工作,这时会产生什么问题呢?如果E3多路复用器用34.368MHz时钟产生使能信号,在这些使能信号上的抖动不会比用在FPGA中任何其它同步逻辑更大。所以,使能信号可以使用正常(高抖动)布线资源,这样就不需要单独的8.448MHz多路复用器时钟,读取E1数据缓冲器的数据时也是一样。换言之,如果E2多路复用器需要数据,它可以激活到特定缓冲器的使能信号。到缓冲器的时钟本身能够保持E3多路复用器所用的34.368MHz时钟,如图5所示。
E3多路复用/解复用的多时钟设计方案 图五
     
  最后,我们检查16个从线路接口芯片输入到FPGA的E1时钟。这些时钟有会产生下面几个问题:首先,16个时钟将占用太多可用芯片时钟布线资源;其次,在同一个FPGA中使用16个异步时钟来驱动相互邻近的触发器,由于地弹、串扰和其它效应将产生噪声问题。例如,由于噪声的原因,一个正边沿触发器会在下降边沿时改变输出状态,此类问题将难以处理。
     
  作为一种可能的解决方案,我们推荐使用一个最快的时钟来对16个E1时钟采样。16个输入时钟都接近2.048MHz,并且还有一个34.368MHz的系统时钟。这样,我们可以用34.368MHz时钟来对16个E1时钟分别进行采样,并将结果存储在一个16位存储器中(每个E1时钟一个位)。然后,我们可以使用一个算法来检测在E1时钟上由低至高的转换,为每一个E1数据信号产生一个使能信号,并在下一个周期(34.368MHz)中存储数据。
     
  要成功实现这种方案,还必需了解时钟-数据关系以避免在数据变化时对数据采样,参见图6。请注意在时钟采样电路的第一级中使用了两个触发器以确保在亚稳态下正常工作。另外需要注意的是,数据和时钟必须具有相同时钟周期数的延迟。
     
  我们已经成功地将多路复用器的时钟减少到一个时钟,同样的方法可否用在解复用器呢?E3解复用器必须采用一个外部输入时钟,这是因为驱动E3输入数据的同一个片外器件利用到该时钟。由于E3解复用器知道在什么时候发送数据到E2解复用器,并能对每个E2解复用器产生使能信号,而四个E2解复用器能工作在与E3多路复用器相同的主时钟下。同样,E2多路复用器能够为每个E1流产生使能信号。
     
  如果我们假设线路接口芯片能够接受有间隙的时钟(gapped clock),一旦确定发出E1使能信号,我们只需要发送一个时钟脉冲至线路接口。然而,只需要简单地发送使能信号本身至接口芯片而不必产生一个新的时钟。因为送至接口的数据将在使能信号的下降沿产生改变(参见图5),我们需要确认接口在时钟的上升沿进行采样。因为使能信号仅在线路接口芯片上而不是在FPGA内用作一个时钟,就没有必要在一个低抖动源中进行布线。注意这是在知道将再也不会用主时钟的连续脉冲送数据到相同的从属器件中时才这样做。
     
  1MHz SPI时钟并不能简单去掉,但我们现在通过使用使能信号和时钟过采样技术,将原先40个时钟减少到3个,这样我们就有了更大的器件选择范围。

异步时钟

     
  在用异步时钟产生任何逻辑前应该尽量先考虑采用其它替代方法,用异步时钟的组合逻辑是产生亚稳态问题的主要原因。同样,当违反触发器的设置和保持时间约束时,在一个短时间内输出将具有不确定性,并且将最终设定在“1”或“0”上,确切的状态不可预知。
     
  幸运的是对于亚稳态性问题已经有一些解决方案。图6说明了这一方案,这是一种双寄存器方法:进入第一级触发器的数据与时钟异步,所以第一级触发器几乎肯定是亚稳态;然而,只要亚稳态的长度小于时钟的周期,第二级触发器就不会进入亚稳态。但是,FPGA供应商很少提供亚稳态时间,尽管该时间一般小于触发器的设置和保持时间之和。
     
  如果时钟不是太快而且能满足时序约束的话,像图6所示的电路将可能不会产生亚稳态。只要所有输出到触发器的通路由相同时钟驱动,即使第一级触发器的输出可用,通常还是需要用像图6中电路来将亚稳态隔离到一条短线。采用这种方法后,将不太可能出现由于电路的改变而无意地在无时钟驱动的逻辑中用到该亚稳太线。
E3多路复用/解复用的多时钟设计方案 如果读数据的是一个计数器,像从一个异步FIFO读或写地址,你应该考虑下列情况:一个传统的3位计数器在状态之间有一个、两个或三个位的变化,例如读数发生在计数器从“011”到“100”变化的瞬间,则所有三个位的值将不确定,读的值会是八种可能状态中的任一种。如果计数器是使用格雷码,如表所示,则每次仅有一位发生状态改变,如果读数发生在计数器变化的瞬间,则只有一个位会有问题,所以在读操作中只有两种可能结果,而且这两种可能结果是计数器正好在读以前的值和正好在读以后的值时。因为读正好发生在计数器产生变化的瞬间,你不可能确切地说哪个值是正确的,即两者都应该认为是有效的。 另一个避免异步时钟问题的方法是忽略较慢的时钟,并用较快的时钟来采样。这需要数据有特殊的成帧特性(例如,具有一个前导码)来定义数据边界。这是一个常用的方法,在差不多每一个具有UART形式的嵌入式系统都有应用。该方法是:采用一个非常快的时钟,比如数据符号率的16倍,在连续发现15个起始字符后开始采样,则下一个16(左右)位相当于送的第一个位,再下一个16(左右)位对应下一个位,并以次类推。

  :

热门推荐

收藏 人收藏
分享:

评论

相关推荐

探析FPGA和ASIC的原理和区别

FPGA是可编程ASIC。 ASIC:专用集成电路,它是面向专门用途的电路,专门为一个用户设计和制造....
的头像 贸泽电子设计圈 发表于 12-15 09:58 66次 阅读
探析FPGA和ASIC的原理和区别

如何进行FPGA设计开发FPGA设计的经验技巧说明

大学时代第一次接触FPGA至今已有10多年的时间,至今记得当初第一次在EDA实验平台上完成数字秒表、....
的头像 传感器技术 发表于 12-15 09:54 64次 阅读
如何进行FPGA设计开发FPGA设计的经验技巧说明

Altera发布其基于ARM的SoC FPGA系列产品

公司发布其基于ARM的SoC 系列产品,在单芯片中集成了28-nm Cyclone V和Arria ....
发表于 12-15 09:50 18次 阅读
Altera发布其基于ARM的SoC FPGA系列产品

新手教程书籍《从零开始走进FPGA世界》

众所周知,FPGA/CPLD的应用日益广泛,从通信行业、医疗行业到工控行业,都可以看到他们的身影。据我了解,在工控行业,F...
发表于 12-14 17:47 174次 阅读
新手教程书籍《从零开始走进FPGA世界》

批量循环GPIF2,源文件在状态机中没有出现在AN70938中

您好,我正在工作,虽然设计实例AN70938的批量循环转移。我已经把我的FPGA板连接到FX3 EZ-UB3设备上。我已经准备好了...
发表于 12-14 16:23 58次 阅读
批量循环GPIF2,源文件在状态机中没有出现在AN70938中

如何在FPGA动态局部可重构中进行TBUF总线宏设计

FPGA 动态局部可重构技术通常将系统划分为固定模块和可重构模块,可重构模块与其他模块之间的通信都是....
发表于 12-14 14:27 16次 阅读
如何在FPGA动态局部可重构中进行TBUF总线宏设计

FPGA机载合成孔径雷达信号处理机接口板卡设计

[table] [tr][td]机载合成孔径雷达(Synthetic Aperture Radar,简称SAR)是以"合成孔径"原理和脉冲压...
发表于 12-14 10:57 31次 阅读
FPGA机载合成孔径雷达信号处理机接口板卡设计

阐释数字电源模块如何满足FPGA的供电需求

瑞萨电子提供的PowerNavigator GUI软件可帮助用户加速电源设计、测试、定型和调试。用户....
的头像 瑞萨电子 发表于 12-14 10:40 244次 阅读
阐释数字电源模块如何满足FPGA的供电需求

如何使用FPGA设计一种通用微处理器的资料概述

本文详细介绍了一种借助VHDL 硬件描述性语言实现基于FPGA 硬件平台的通用微处理器设计的完整方案....
发表于 12-13 18:00 31次 阅读
如何使用FPGA设计一种通用微处理器的资料概述

如何使用FPGA实现一种图像预处理结构及典型算法

图像滤波和边缘检测等预处理算法是视觉导航系统中道路检测和车辆检测等复杂视觉处理的前提,其性能和处理时....
发表于 12-13 17:56 21次 阅读
如何使用FPGA实现一种图像预处理结构及典型算法

如何使用FPGA设计与实现一种全数字BPSK解调器

介绍一种全数字BPSK 解调器的设计及FPGA 实现。该解调器采用前向开环的结构实现载波同步,与传统....
发表于 12-13 17:56 20次 阅读
如何使用FPGA设计与实现一种全数字BPSK解调器

如何使用FPGA设计和实现OFDM系统和OFDM中的FFT模块设计及其FPGA实现

建立了一个基于FPGA的可实现流水化运行的OFDM系统的硬件平台,包括模拟前端、基于FPGA的OFD....
发表于 12-13 16:45 26次 阅读
如何使用FPGA设计和实现OFDM系统和OFDM中的FFT模块设计及其FPGA实现

我们要学好FPGA必须掌握以下知识

四个字母Field(现场) Programmable(可编程) Gate(逻辑门) Array(阵列....
发表于 12-13 15:59 100次 阅读
我们要学好FPGA必须掌握以下知识

Efinix® 推出Trion™ T20 FPGA样品 支持主要客户和市场的需求

香港– 2018年12月13日 – 可编程产品平台和技术创新企业Efinix®今天宣布提供Trion....
发表于 12-13 15:50 61次 阅读
Efinix® 推出Trion™ T20 FPGA样品 支持主要客户和市场的需求

请问可以通过virtex-5用纯Verilog配置9361完成基本的收发吗

我想通过virtex5配置9361,是不是只要用Verilog通过spi配置寄存器就可以使9361工作?...
发表于 12-13 15:08 78次 阅读
请问可以通过virtex-5用纯Verilog配置9361完成基本的收发吗

Xilinx FPGA设计专家必备宝典(基础教程+串口设计+开发秘籍)

现场可编程门阵列(FPGA)是一种集成电路,可由客户或设计人员在制造后配置,因此“现场可编程”。FPGA配置通常使用硬件描...
发表于 12-13 14:39 582次 阅读
Xilinx FPGA设计专家必备宝典(基础教程+串口设计+开发秘籍)

黑金FPGA,microblaze软核编译生成system.bit文件时出错

发表于 12-13 13:57 62次 阅读
黑金FPGA,microblaze软核编译生成system.bit文件时出错

怎么触发E4438C上的arb

您好,我正在使用IVI驱动程序并为我的E4438C VSG编写c#。 我目前能够从ARB触发突发波形(~500ms),但为了使其正常...
发表于 12-12 16:08 35次 阅读
怎么触发E4438C上的arb

一个关于QUARTUS自带乘法核的问题

我在使用quartus自带的乘法核时遇到了问题,得到的电路文件没有输出端口,然后我直接用VHDL例化,仿真也没有结果,说明也是没...
发表于 12-12 15:20 69次 阅读
一个关于QUARTUS自带乘法核的问题

FPGA测试结果示范

仿真程序产生的视频图像数据如图 7-18 所示。开始的“aa bb cc dd ee ff”是无效数据,“ff 00 20”表示场同步信号。 经过 F...
发表于 12-12 14:17 43次 阅读
FPGA测试结果示范

FPGA测试程序代码示范

由于整个 FPGA 程序包括 3 部分:处于 TOP 的主体程序,控制其他各个部分程序的运行;视频图像数据采集程序,从 SAA71...
发表于 12-12 14:11 43次 阅读
FPGA测试程序代码示范

FPGA企业与大学生交流,产教结合助推人才培养

导读:人才是集成电路发展的根本,除了学校教育以外,企业的参与可以帮助学生快速理解市场需求,近日在南京....
的头像 李弯弯 发表于 12-11 18:04 1011次 阅读
FPGA企业与大学生交流,产教结合助推人才培养

多功能智能小车系统设计的毕业设计论文免费下载

本设计的多功能智能小车系统是以Altera公司Cyclone系列的EP1C3T144为主控芯片的小车....
发表于 12-11 16:44 80次 阅读
多功能智能小车系统设计的毕业设计论文免费下载

Achronix推出其第四代嵌入式FPGA产品

Achronix半导体公司推出其第四代嵌入式FPGA产品Speedcore Gen4 eFPGA I....
发表于 12-10 17:28 81次 阅读
Achronix推出其第四代嵌入式FPGA产品

如何使用FPGA设计高速实时数据采集存储系统的资料概述

设计了以FPGA器件XCSVIXS0为核心处理芯片的高速数据采集存储系统。在XCSVLXS0内部实现....
发表于 12-10 16:47 47次 阅读
如何使用FPGA设计高速实时数据采集存储系统的资料概述

怎么监控FPGA内部的温度和电压变化情况

打开例程工程后,我们可以查看工程源代码和仿真TestBench来学习,对工程进行更详细的研究和IP核....
的头像 FPGA2嵌入式 发表于 12-10 11:33 304次 阅读
怎么监控FPGA内部的温度和电压变化情况

基于AXI总线的未知信号频率测量

这一节我们实现一个稍微复杂一点的功能——测量未知信号的频率,PS和PL通过AXI总线交互数据,实现我....
发表于 12-08 11:00 91次 阅读
基于AXI总线的未知信号频率测量

EDA实验之在FPGA上设计一个DDS模块

在FPGA上设计一个DDS模块,在DE0 开发板上运行,在FPGA芯片内部合成出数字波形即可。
发表于 12-08 09:18 109次 阅读
EDA实验之在FPGA上设计一个DDS模块

采用LED光通信技术实现温度实时显示系统的设计

LED光通信,就是用LED光来实现无线通信,主要是靠发光二极管(LED)发出的高速亮灭闪烁信号来传输....
发表于 12-08 08:21 117次 阅读
采用LED光通信技术实现温度实时显示系统的设计

从一个FPGA厂商转变为一个提供系统设计的厂商 赛灵思转型成功

如今随着芯片工艺的演进,一方面我们看到芯片尺寸越来越小,性能越来越提升,另一方面集成度也在不断提高。....
发表于 12-07 17:02 228次 阅读
从一个FPGA厂商转变为一个提供系统设计的厂商 赛灵思转型成功

如何使用USB2.0和DDR2进行数据采集系统设计与FPGA实现资料概述

采用DDR2 SDRAM作为被采集数据的缓存技术, 给出了USB2.0与DDR2相结合的实时、高速数....
发表于 12-07 16:12 52次 阅读
如何使用USB2.0和DDR2进行数据采集系统设计与FPGA实现资料概述

如果能在SoC中嵌入一个FPGA核心 那么芯片将具备出色的机器学习能力

人工智能是当下最火爆的话题。据说,与人工智能相关的市场规模十分巨大,是继PC市场、移动互联网市场之后....
发表于 12-07 13:36 151次 阅读
如果能在SoC中嵌入一个FPGA核心 那么芯片将具备出色的机器学习能力

Microsemi Corporation推出了新型SoC FPGA架构扩展其Mi-V生态系统

2018年12月5日—— 在5G、机器学习和物联网(IoT)联合推动的新计算时代,嵌入式开发人员需要....
发表于 12-06 16:27 165次 阅读
Microsemi Corporation推出了新型SoC FPGA架构扩展其Mi-V生态系统

Xilinx推出可扩展处理平台架构 设计人员可同时拥有串行并行处理能力

无论是汽车驾驶辅助、智能视频监控、工业自动化、航天与国防或是无线通信等终端应用,功能的日益复杂使得嵌....
发表于 12-06 16:24 93次 阅读
Xilinx推出可扩展处理平台架构 设计人员可同时拥有串行并行处理能力

AI芯片如果有罗马大道 必定归功可重构计算

在芯片架构设计领域中,可重构计算技术并非一项新的存在。20世纪60年代末,加利福尼亚大学的Gerai....
的头像 电子发烧友网工程师 发表于 12-06 08:44 850次 阅读
AI芯片如果有罗马大道 必定归功可重构计算

FPGA如何实现30倍的高性能计算

FPGA(Field Programmable Gate Array)现场可编程门阵列,作为AS....
的头像 电子发烧友网工程师 发表于 12-06 08:36 317次 阅读
FPGA如何实现30倍的高性能计算

如何使用MicroBlaze软核进行FPGA片上系统设计

Xilinx公司的MicroBlaze 32位软处理器核是支持CoreConnect总线的标准外设集....
发表于 12-05 17:18 36次 阅读
如何使用MicroBlaze软核进行FPGA片上系统设计

站在FPGA的肩膀上 AI可重构芯片诞生

在芯片架构设计领域中,可重构计算技术并非一项新的存在。20世纪60年代末,加利福尼亚大学的Gerai....
发表于 12-03 10:09 561次 阅读
站在FPGA的肩膀上 AI可重构芯片诞生

基于闪存FPGA的门阵列为设计带来更多灵活性

另一方面,在基于闪存的FPGA中,配置模式保存在芯片上的非易失性存储器单元,甚至电源被移除时,闪存单....
发表于 12-02 10:24 609次 阅读
基于闪存FPGA的门阵列为设计带来更多灵活性

赛灵思推出全新系列的产品类型ACAP 媲美CPU、GPU的新一代FPGA架构

当博通收购高通案遭到美国总统特朗普的阻止后,下一个被华尔街分析师看准的“目标”便锁定在圣何塞芯片厂商....
发表于 12-01 10:47 590次 阅读
赛灵思推出全新系列的产品类型ACAP 媲美CPU、GPU的新一代FPGA架构

xilinx FPGA bit 文件加密

当你的项目终于做完了,到了发布的关键节点,为了防止自己的心血被别人利用,最好对产品进行bit加密。 ....
的头像 电子发烧友网工程师 发表于 12-01 09:33 278次 阅读
xilinx FPGA bit 文件加密

赛灵思官方博客本周主打:云端时序收敛,高效可靠

Plunify Cloud 云平台为 FPGA 工程师极大地简化了使用云服务器的技术与安全要求。
的头像 电子发烧友网工程师 发表于 12-01 08:52 295次 阅读
赛灵思官方博客本周主打:云端时序收敛,高效可靠

FPGA的几点重要总结

FPGA编程语言为何叫硬件描述语言? 硬件即FPGA硬件,硬件描述语言,也就自然地告诉....
的头像 电子发烧友网工程师 发表于 12-01 08:30 363次 阅读
FPGA的几点重要总结

Achronix半导体全面对接Speedcore eFPGA技术

该组项目将使研究机构和公司能够使用Achronix高性能Speedcore eFPGA技术快速构建低....
的头像 电子发烧友网工程师 发表于 12-01 08:25 359次 阅读
Achronix半导体全面对接Speedcore eFPGA技术

如何使用FPGA和DSP进行精度数字频率计的设计

本设计根据等精度的多周期同步测频原理,采用Altera 公司的FLEX10K10 系列FPGA 和T....
发表于 11-30 15:41 73次 阅读
如何使用FPGA和DSP进行精度数字频率计的设计

如何使用FPGA实现交换机中的HEC模块

本文在研究了三层以太网交换技术后,设计了一种采用 FPGA 来实现以太口和ATM口之间的数据通道上H....
发表于 11-30 15:41 38次 阅读
如何使用FPGA实现交换机中的HEC模块

如何使用FPGA实现Volterra级数间接学习型的预失真器

在宽带无线通信系统中,高功率放大器HPA 因其非线性和记忆特性,将会导致频谱再生和邻道干扰。本文论述....
发表于 11-30 15:41 42次 阅读
如何使用FPGA实现Volterra级数间接学习型的预失真器

紫光国微参股科技创新型企业

11月27日,紫光国微在互动平台表示,科创板是科技型创新企业对接资本市场的良好渠道,公司也在关注具体....
的头像 半导体投资联盟 发表于 11-30 15:36 545次 阅读
紫光国微参股科技创新型企业

多模式数字控制,性能大升级

英特尔® Enpirion® 数字 PowerSoC 经过精心的定义、设计和验证,可满足 FPGA、....
的头像 电子发烧友网工程师 发表于 11-29 14:44 282次 阅读
多模式数字控制,性能大升级

Altium Designer的介绍和使用教程等资料概述

Altium Designer 基于一个软件集成平台,把为电子产品开发提供完整环境所需的工具全部整合....
发表于 11-29 08:00 74次 阅读
Altium Designer的介绍和使用教程等资料概述

数据库教程之如何进行关系数据库的结构化查询语言

本章主要介绍了T-SQL语言的数据定义、数据操纵和数据控制功能,介绍了视图、存储过程和触发器,介绍批....
发表于 11-28 19:44 44次 阅读
数据库教程之如何进行关系数据库的结构化查询语言

华为携手赛灵思 展示400G以太网线卡原型

北京时间3月21日下午消息,一场由网络供应商华为和芯片制造商赛灵思(Xilinx)上周进行的展示,标....
发表于 11-28 16:13 313次 阅读
华为携手赛灵思 展示400G以太网线卡原型

ARM崛起和后Altera时代 赛灵思的未来之路任重而道远

英特尔和Altera传出收购消息以后,分分合合好几次。导致我买的股票上涨了5美元,我奖励自己吃了一顿....
发表于 11-28 16:05 862次 阅读
ARM崛起和后Altera时代 赛灵思的未来之路任重而道远

正弦信号发生器的系统设计软硬件调试和仿真的详细资料合集免费下载

在现代电子测量技术的研究及应用领域中,常常需要高精度且频率可调的信号源。而随着大规模可编程逻辑器件F....
发表于 11-28 15:56 45次 阅读
正弦信号发生器的系统设计软硬件调试和仿真的详细资料合集免费下载

基本型组态工业串口屏数据手册V4.0详细资料免费下载

系统在无指令接收的状态下,ARM 基本处于空闲状态,所有大负荷的数据读取和显示刷新工作全部由 FPG....
发表于 11-28 08:00 39次 阅读
基本型组态工业串口屏数据手册V4.0详细资料免费下载

如何使用VHDL设计一个简易出租车计费器的资料合集免费下载

本文介绍了一种采用单片FPGA芯片进行出租车计费器的设计方法,主要阐述如何使用EDA器件取代传统的电....
发表于 11-28 08:00 55次 阅读
如何使用VHDL设计一个简易出租车计费器的资料合集免费下载

LTE标准下如何进行Turbo码的研究及FPGA实现

信息传输的可靠性和有效性一直是通信系统中研究的热点问题,而信道编码技术则是很好解决这一矛盾的有效技术....
发表于 11-27 16:37 49次 阅读
LTE标准下如何进行Turbo码的研究及FPGA实现

GPU跃升为领头羊 以FPGA为主的英特尔也加紧脚步部署

人工智能(AI)热潮持续攀升,AI晶片的竞争也日趋激烈,而GPU近年来可说是跃升为AI晶片领头羊。为....
发表于 11-27 16:37 131次 阅读
GPU跃升为领头羊 以FPGA为主的英特尔也加紧脚步部署

浅谈运动控制卡的功能及使用

关于运动控制卡,其实现基于PC的界面,强大的PC功能,两者相互结合,从而使得于东控制器的能力达到了顶....
的头像 如意 发表于 11-27 14:30 492次 阅读
浅谈运动控制卡的功能及使用

SN74LVTH16373 具有三态输出的 3.3V ABT 16 位透明 D 类锁存器

'LVTH16373器件是16位透明D型锁存器,具有3态输出,设计用于低压(3.3V)VCC操作,但能够为5 V系统环境提供TTL接口。这些器件特别适用于实现缓冲寄存器,I /O端口,双向总线驱动器和工作寄存器。 这些器件可用作两个8位锁存器或一个16位锁存器。当锁存使能(LE)输入为高电平时,Q输出跟随数据(D)输入。当LE变为低电平时,Q输出锁存在D输入设置的电平。 缓冲输出使能(OE)输入可用于将8个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动器提供了在没有接口或上拉组件的情况下驱动总线线路的能力。 OE不影响锁存器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 有源总线保持电路将未使用或未驱动的输入保持在有效的逻辑状态。建议不要使用上拉或下拉电阻与总线保持电路。 当VCC介于0和1.5 V之间时,器件处于高阻态上电或断电。但是,为了确保1.5 V以上的高阻态,OE应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 这些器件完全...
发表于 10-11 15:53 2次 阅读
SN74LVTH16373 具有三态输出的 3.3V ABT 16 位透明 D 类锁存器

SN74ALVCH16823 具有三态输出的 18 位总线接口触发器

这个18位总线接口触发器设计用于1.65 V至3.6 VVCC操作。 SN74ALVCH16823具有三态输出,专为驱动高电容或相对低阻抗负载而设计。该器件特别适用于实现更宽的缓冲寄存器,I /O端口,带奇偶校验的双向总线驱动器和工作寄存器。 SN74ALVCH16823可用作两个9位触发器或一个18-位触发器。当时钟使能(CLKEN)输入为低电平时,D型触发器在时钟的低到高转换时输入数据。将CLKEN置为高电平会禁用时钟缓冲区,从而锁存输出。将清除(> CLR)输入设为低电平会使Q输出变为低电平而与时钟无关。 缓冲输出使能(< span style =“text-decoration:overline”> OE )输入可用于将九个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 输出使能(OE)输入不影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 为确保上电或断电期间的高阻态,OE应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定...
发表于 10-11 15:12 6次 阅读
SN74ALVCH16823 具有三态输出的 18 位总线接口触发器

SN74ABT16373A 具有三态输出的 16 位透明 D 类锁存器

'ABT16373A是16位透明D型锁存器,具有3态输出,专为驱动高电容或相对低阻抗负载而设计。它们特别适用于实现缓冲寄存器,I /O端口,双向总线驱动器和工作寄存器。 这些器件可用作两个8位锁存器或一个16位锁存器。当锁存使能(LE)输入为高电平时,Q输出跟随数据(D)输入。当LE变为低电平时,Q输出锁存在D输入端设置的电平。 缓冲输出使能(OE \)输入可用于将8个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 OE \不会影响锁存器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 当VCC介于0和2.1 V之间时,器件在上电或断电期间处于高阻态。但是,为了确保2.1 V以上的高阻态,OE \应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 SN54ABT16373A的特点是可在-55°C至125°C的整个军用温度范围内工作。 SN74ABT16373A的特点是在-40°C至85°C的温度范围内工作。 ...
发表于 10-11 15:07 13次 阅读
SN74ABT16373A 具有三态输出的 16 位透明 D 类锁存器

SN74ALVCH16820 具有双路输出和三态输出的 3.3V 10 位触发器

这个10位触发器设计用于1.65 V至3.6 VVCC操作。 < p> SN74ALVCH16820的触发器是边沿触发的D型触发器。在时钟(CLK)输入的正跳变时,器件在Q输出端提供真实数据。 缓冲输出使能(OE)输入可用于将10个输出放入正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 OE \输入不会影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 为确保上电或断电期间的高阻态,OE \应连接到VCC通过上拉电阻;电阻的最小值由驱动器的电流吸收能力决定。 提供有源总线保持电路,用于将未使用或未驱动的输入保持在有效的逻辑电平。不建议在上拉电路中使用上拉或下拉电阻。 特性 德州仪器广播公司的成员?系列 数据输入端的总线保持消除了对外部上拉/下拉电阻的需求 每个JESD的闩锁性能超过250 mA 17 ESD保护超过JESD 22 2000-V人体模型(...
发表于 10-11 14:49 2次 阅读
SN74ALVCH16820 具有双路输出和三态输出的 3.3V 10 位触发器

SN74ABT16374A 具有三态输出的 16 位边沿 D 类触发器

'ABT16374A是16位边沿触发D型触发器,具有3态输出,专为驱动高电容或相对低阻抗而设计负载。它们特别适用于实现缓冲寄存器,I /O端口,双向总线驱动器和工作寄存器。 这些器件可用作两个8位触发器或一个16位触发器。在时钟(CLK)输入的正跳变时,触发器的Q输出采用在数据(D)输入处设置的逻辑电平。 缓冲输出使能(OE \)输入可用于将8个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 OE \不会影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 当VCC介于0和2.1 V之间时,器件在上电或断电期间处于高阻态。但是,为了确保2.1 V以上的高阻态,OE \应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 SN54ABT16374A的特点是可在-55°C至125°C的整个军用温度范围内工作。 SN74ABT16374A的特点是在-40°C至85°C的温度范围内工作。 特性 ...
发表于 10-11 11:46 2次 阅读
SN74ABT16374A 具有三态输出的 16 位边沿 D 类触发器

SN74AHCT16374 具有三态输出的 16 位边沿 D 类触发器

'AHCT16374器件是16位边沿触发D型触发器,具有3态输出,专为驱动高电容或相对较低的电容而设计阻抗负载。它们特别适用于实现缓冲寄存器,I /O端口,双向总线驱动器和工作寄存器。 这些器件可用作两个8位触发器或一个16位触发器。在时钟(CLK)输入的正跳变时,触发器的Q输出取数据(D)输入的逻辑电平。 缓冲输出使能(OE \)输入可用于将8个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 为了确保上电或断电期间的高阻态,OE \应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 OE \不会影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 SN54AHCT16374的特点是可在-55°C至125°C的整个军用温度范围内工作。 SN74AHCT16374的工作温度范围为-40°C至85°C。   特性 德州仪器WidebusTM家庭成员 EPICTM(...
发表于 10-11 11:32 2次 阅读
SN74AHCT16374 具有三态输出的 16 位边沿 D 类触发器

CY74FCT162374T 具有三态输出的 16 位边沿触发 D 类触发器

CY74FCT16374T和CY74FCT162374T是16位D型寄存器,设计用作高速,低功耗总线应用中的缓冲寄存器。通过连接输出使能(OE)和时钟(CLK)输入,这些器件可用作两个独立的8位寄存器或单个16位寄存器。流通式引脚排列和小型收缩包装有助于简化电路板布局。 使用Ioff为部分断电应用完全指定此设备。 Ioff电路禁用输出,防止在断电时损坏通过器件的电流回流。 CY74FCT16374T非常适合驱动高电容负载和低阻抗背板。 CY74FCT162374T具有24 mA平衡输出驱动器,输出端带有限流电阻。这减少了对外部终端电阻的需求,并提供最小的下冲和减少的接地反弹。 CY74FCT162374T非常适合驱动传输线。 特性 Ioff支持部分省电模式操作 边沿速率控制电路用于显着改善的噪声特性 典型的输出偏斜< 250 ps ESD&gt; 2000V TSSOP(19.6密耳间距)和SSOP(25密耳间距)封装 工业温度范围-40°C至+ 85°C VCC= 5V±10% CY74FCT16374T特点: ...
发表于 10-11 11:28 2次 阅读
CY74FCT162374T 具有三态输出的 16 位边沿触发 D 类触发器

SN74ALVCH16260 具有三态输出的 12 位至 24 位多路复用 D 类锁存器

这个12位至24位多路复用D型锁存器设计用于1.65 V至3.6 VVCC操作。 SN74ALVCH16260用于必须将两个独立数据路径复用到单个数据路径或从单个数据路径解复用的应用中。典型应用包括在微处理器或总线接口应用中复用和/或解复用地址和数据信息。该器件在存储器交错应用中也很有用。 三个12位I /O端口(A1-A12,1B1-1B12和2B1-2B12)可用于地址和/或数据传输。输出使能(OE1B \,OE2B \和OEA \)输入控制总线收发器功能。 OE1B \和OE2B \控制信号还允许在A到B方向上进行存储体控制。 可以使用内部存储锁存器存储地址和/或数据信息。锁存使能(LE1B,LE2B,LEA1B和LEA2B)输入用于控制数据存储。当锁存使能输入为高电平时,锁存器是透明的。当锁存使能输入变为低电平时,输入端的数据被锁存并保持锁存,直到锁存使能输入返回高电平为止。 确保上电或断电期间的高阻态,OE \应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 提供有源总线保持电路,用于保持有效逻辑电平的未使用或浮动数据输入。 < p> SN74ALVCH16260的工...
发表于 10-11 11:08 6次 阅读
SN74ALVCH16260 具有三态输出的 12 位至 24 位多路复用 D 类锁存器

SN74ALVCH16374 具有三态输出的 16 位边沿 D 类触发器

这个16位边沿触发D型触发器设计用于1.65 V至3.6 VVCC操作。 SN74ALVCH16374特别适用于实现缓冲寄存器,I /O端口,双向总线驱动器和工作寄存器。它可以用作两个8位触发器或一个16位触发器。在时钟(CLK)输入的正跳变时,触发器的Q输出取数据(D)输入的逻辑电平。 OE \可用于将8个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 OE \不会影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 为确保上电或断电期间的高阻态,OE \应连接到VCC通过上拉电阻;电阻的最小值由驱动器的电流吸收能力决定。 有源总线保持电路将未使用或未驱动的输入保持在有效的逻辑状态。不建议在上拉电路中使用上拉或下拉电阻。 特性 德州仪器广播公司的成员?系列 工作电压范围为1.65至3.6 V 最大tpd为4.2 ns,3.3 V ±24-mA输出驱动在3.3 V 数据输入...
发表于 10-11 11:06 2次 阅读
SN74ALVCH16374 具有三态输出的 16 位边沿 D 类触发器

SN74ALVCH16373 具有三态输出的 16 位透明 D 类锁存器

这个16位透明D型锁存器设计用于1.65 V至3.6 VVCC操作。 SN74ALVCH16373特别适用于实现缓冲寄存器,I /O端口,双向总线驱动器和工作寄存器。该器件可用作两个8位锁存器或一个16位锁存器。当锁存使能(LE)输入为高电平时,Q输出跟随数据(D)输入。当LE变为低电平时,Q输出锁存在D输入设置的电平。 缓冲输出使能(OE)输入可用于将8个输出置于正常状态逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 OE \不会影响锁存器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 为确保上电或断电期间的高阻态,OE \应连接到VCC通过上拉电阻;电阻的最小值由驱动器的电流吸收能力决定。 有源总线保持电路将未使用或未驱动的输入保持在有效的逻辑状态。不建议在上拉电路中使用上拉或下拉电阻。 特性 德州仪器广播公司的成员?系列 工作电压范围为1.65 V至3.6 V 最大tpd3.6 ns,3.3 V ...
发表于 10-11 11:02 4次 阅读
SN74ALVCH16373 具有三态输出的 16 位透明 D 类锁存器

SN74LVCH16373A 具有三态输出的 16 位透明 D 类锁存器

这个16位透明D型锁存器设计用于1.65 V至3.6 VVCC操作。 特性 德州仪器宽带总线系列成员 典型VOLP(输出接地反弹) &lt; 0.8 V,VCC= 3.3 V,TA= 25°C 典型VOHV(输出V < sub> OH Undershoot) &gt; 2 V在VCC= 3.3 V,TA= 25°C Ioff支持实时插入,部分 - 电源关闭模式和后驱动保护 支持混合模式信号操作(具有3.3VVCC的5V输入和输出电压) < li>数据输入端的总线保持消除了对外部上拉或下拉电阻的需求 每个JESD的闩锁性能超过250 mA 17 ESD保护超过JESD 22 < ul> 2000-V人体模型(A114-A) 200-V机型(A115-A) 参数 与其它产品相比 D 类锁存器   Technology Family VCC (Min) (V) VCC (Max) (V) Bits (#) ...
发表于 10-11 11:00 8次 阅读
SN74LVCH16373A 具有三态输出的 16 位透明 D 类锁存器

SN74ABTH16260 具有三态输出的 12 位至 24 位多路复用 D 类锁存器

SN54ABT16260和SN74ABTH16260是12位至24位多路复用D型锁存器,用于必须复用两条独立数据路径的应用中,或者从单个数据路径中解复用。典型应用包括在微处理器或总线接口应用中复用和/或解复用地址和数据信息。该器件在存储器交错应用中也很有用。 三个12位I /O端口(A1-A12,1B1-1B12和2B1-2B12)可用于地址和/或数据传输。输出使能(OE1B \,OE2B \和OEA \)输入控制总线收发器功能。 OE1B \和OE2B \控制信号还允许A-to-B方向的存储体控制。 可以使用内部存储锁存器存储地址和/或数据信息。锁存使能(LE1B,LE2B,LEA1B和LEA2B)输入用于控制数据存储。当锁存使能输入为高电平时,锁存器是透明的。当锁存使能输入变为低电平时,输入端的数据被锁存并保持锁存状态,直到锁存使能输入返回高电平为止。 当VCC介于0和2.1 V之间时,器件在上电或断电期间处于高阻态。但是,为了确保2.1 V以上的高阻态,OE \应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 提供有源总线保持电路,用于保持有效逻辑电平的未使用或浮动数据输入。 ...
发表于 10-11 10:51 4次 阅读
SN74ABTH16260 具有三态输出的 12 位至 24 位多路复用 D 类锁存器

SN74ABT162823A 具有三态输出的 18 位总线接口触发器

这些18位总线接口触发器具有3态输出,专为驱动高电容或相对低阻抗负载而设计。它们特别适用于实现更宽的缓冲寄存器,I /O端口,带奇偶校验的双向总线驱动器和工作寄存器。 ?? ABT162823A器件可用作两个9位触发器或一个18位触发器。当时钟使能(CLKEN)\输入为低电平时,D型触发器在时钟的低到高转换时输入数据。将CLKEN \置为高电平会禁用时钟缓冲器,从而锁存输出。将清零(CLR)\输入设为低电平会使Q输出变为低电平而与时钟无关。 缓冲输出使能(OE)\输入将9个输出置于正常逻辑状态(高电平)或低电平)或高阻抗状态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动器提供了驱动总线线路的能力,无需接口或上拉组件。 OE \不会影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 输出设计为源电流或吸收电流高达12 mA,包括等效的25- 串联电阻,用于减少过冲和下冲。 这些器件完全符合热插拔规定使用Ioff和上电3状态的应用程序。 Ioff电路禁用输出,防止在断电时损坏通过器件的电流回流。上电和断电期间,上电三态电路将输出置...
发表于 10-11 10:48 13次 阅读
SN74ABT162823A 具有三态输出的 18 位总线接口触发器

SN74ABTH162260 具有串联阻尼电阻和三态输出的 12 位到 24 位多路复用 D 类锁存器

'ABTH162260是12位至24位多路复用D型锁存器,用于两个独立数据路径必须复用或复用的应用中。 ,单一数据路径。典型应用包括在微处理器或总线接口应用中复用和/或解复用地址和数据信息。这些器件在存储器交错应用中也很有用。 三个12位I /O端口(A1-A12,1B1-1B12和2B1-2B12)可用于地址和/或数据传输。输出使能(OE1B \,OE2B \和OEA \)输入控制总线收发器功能。 OE1B \和OE2B \控制信号还允许A-to-B方向的存储体控制。 可以使用内部存储锁存器存储地址和/或数据信息。锁存使能(LE1B,LE2B,LEA1B和LEA2B)输入用于控制数据存储。当锁存使能输入为高电平时,锁存器是透明的。当锁存使能输入变为低电平时,输入端的数据被锁存并保持锁存状态,直到锁存使能输入返回高电平为止。 B端口输出设计为吸收高达12 mA的电流,包括等效的25系列电阻,以减少过冲和下冲。 提供有源总线保持电路,用于保持有效逻辑电平的未使用或浮动数据输入。 当VCC介于0和2.1 V之间时,器件在上电或断电期间处于高阻态。但是,为了确保2.1 V以上的高阻态,OE \应通过...
发表于 10-11 10:45 0次 阅读
SN74ABTH162260 具有串联阻尼电阻和三态输出的 12 位到 24 位多路复用 D 类锁存器

SN74ABT162841 具有三态输出的 20 位总线接口 D 类锁存器

这些20位透明D型锁存器具有同相三态输出,专为驱动高电容或相对低阻抗负载而设计。它们特别适用于实现缓冲寄存器,I /O端口,双向总线驱动器和工作寄存器。 ?? ABT162841器件可用作两个10位锁存器或一个20位锁存器。锁存使能(1LE或2LE)输入为高电平时,相应的10位锁存器的Q输出跟随数据(D)输入。当LE变为低电平时,Q输出锁存在D输入设置的电平。 缓冲输出使能(10E或2OE)输入可用于放置输出。相应的10位锁存器处于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。 输出设计为吸收高达12 mA的电流,包括等效的25- 用于减少过冲和下冲的串联电阻。 这些器件完全适用于使用I的热插入应用关闭并启动3状态。 Ioff电路禁用输出,防止在断电时损坏通过器件的电流回流。上电和断电期间,上电三态电路将输出置于高阻态,从而防止驱动器冲突。 为确保上电或断电期间的高阻态, OE \应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 OE \不影响锁存器的内部操作。当输出处于高阻态时,可以保留旧数据...
发表于 10-11 10:43 4次 阅读
SN74ABT162841 具有三态输出的 20 位总线接口 D 类锁存器

SN74ALVTH16821 具有三态输出的 2.5V/3.3V 20 位总线接口触发器

'ALVTH16821器件是20位总线接口触发器,具有3态输出,设计用于2.5 V或3.3 VVCC操作,但能够为5 V系统环境提供TTL接口。 这些器件可用作两个10位触发器或一个20位触发器。 20位触发器是边沿触发的D型触发器。在时钟(CLK)的正跳变时,触发器存储在D输入端设置的逻辑电平。 缓冲输出使能(OE \)输入可用于将10个输出置于正常逻辑状态(高电平或低电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 OE \不会影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 当VCC介于0和1.2 V之间时,器件在上电或断电期间处于高阻态。但是,为了确保1.2 V以上的高阻态,OE \应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 提供有源总线保持电路,用于保持有效逻辑电平的未使用或浮动数据输入。 SN54ALVTH16821的特点是可在-55°C至125°C的整个军用温度范围内工作。 SN74ALVTH16821的工作温度范围为-40&de...
发表于 10-11 10:35 2次 阅读
SN74ALVTH16821 具有三态输出的 2.5V/3.3V 20 位总线接口触发器

SN74ALVTH16374 具有三态输出的 2.5V/3.3V 16 位边沿 D 类触发器

'ALVTH16374器件是16位边沿触发D型触发器,具有3态输出,设计用于2.5V或3.3VV < sub> CC 操作,但能够为5 V系统环境提供TTL接口。这些器件特别适用于实现缓冲寄存器,I /O端口,双向总线驱动器和工作寄存器。 这些器件可用作两个8位触发器或一个16位翻转器。翻牌。在时钟(CLK)的正跳变时,触发器存储在数据(D)输入处设置的逻辑电平。 缓冲输出使能(OE)输入可用于将8个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 OE不影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 提供有源总线保持电路,用于保持有效逻辑电平的未使用或浮动数据输入。 /p> 当VCC介于0和1.2 V之间时,器件在上电或断电期间处于高阻态。但是,为了确保1.2 V以上的高阻态,OE应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 SN54ALVTH16374的特点是在-55°C至125°C的整个军用温度...
发表于 10-11 10:31 4次 阅读
SN74ALVTH16374 具有三态输出的 2.5V/3.3V 16 位边沿 D 类触发器

SN74ABTH16823 具有三态输出的 18 位总线接口触发器

这些18位触发器具有3态输出,专为驱动高电容或相对低阻抗负载而设计。它们特别适用于实现更宽的缓冲寄存器,I /O端口,带奇偶校验的双向总线驱动器和工作寄存器。 'ABTH16823可用作两个9位触发器或一个18位触发器。当时钟使能(CLKEN \)输入为低电平时,D型触发器在时钟的低到高转换时输入数据。将CLKEN \置为高电平会禁用时钟缓冲器,锁存输出。将清零(CLR \)输入置为低电平会使Q输出变为低电平,与时钟无关。 缓冲输出使能(OE \)输入可用于将9个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 OE \不会影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 当VCC介于0和2.1 V之间时,器件在上电或断电期间处于高阻态。但是,为了确保2.1 V以上的高阻态,OE \应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 提供有源总线保持电路,用于保持有效逻辑电平的未使用或浮动数据输入。 ...
发表于 10-10 17:15 11次 阅读
SN74ABTH16823 具有三态输出的 18 位总线接口触发器

SN74AHCT16373 具有三态输出的 16 位透明 D 类锁存器

SNxAHCT16373器件是16位透明D型锁存器,具有3态输出,专为驱动高电容或相对低阻抗负载而设计。它们特别适用于实现缓冲寄存器,I /O端口,双向总线驱动器和工作寄存器。 特性 德州仪器Widebus™系列的成员 EPIC™(增强型高性能注入CMOS)工艺 输入兼容TTL电压 分布式VCC和GND引脚最大限度地提高高速 开关噪声 流通式架构优化PCB布局 每个JESD的闩锁性能超过250 mA 17 ESD保护每个MIL-STD超过2000 V- 883, 方法3015;使用机器型号超过200 V(C = 200 pF,R = 0) 封装选项包括: 塑料收缩小外形(DL)封装 < li>薄收缩小外形(DGG)封装 薄超小外形(DGV)封装 80-mil精细间距陶瓷扁平(WD)封装 25密耳的中心间距 参数 与其它产品相比 D 类锁存器   ...
发表于 10-10 16:23 12次 阅读
SN74AHCT16373 具有三态输出的 16 位透明 D 类锁存器

SN74LS652 八路总线收发器和寄存器

这些设备包括总线收发器电路,D型触发器和控制电路,用于直接从数据总线或从数据总线多路传输数据。内部存储寄存器。启用GAB和G \ BA以控制收发器功能。提供SAB和SBA控制引脚以选择是否传输实时数据或存储数据。低输入电平选择实时数据,高选择存储数据。以下示例演示了可以使用'LS651,'LS652和'LS653执行的四种基本总线管理功能。 A或B数据总线上的数据或两者都可以通过适当的时钟引脚(CAB或CBA)从低到高的跳变存储在内部D触发器中,而不管选择或启用控制引脚。当SAB或SBA处于实时传输模式时,通过同时启用GAB和G \ BA,还可以在不使用内部D型触发器的情况下存储数据。在此配置中,每个输出都会增强其输入。因此,当两组总线的所有其他数据源都处于高阻抗时,每组总线将保持其最后状态。 SN54LS651至SN54LS653的特点是可在-55°C至125°C的整个军用温度范围内工作。 SN74LS651至SN74LS653的工作温度范围为0°C至70°C。 特性 总线收发器/寄存器 A和B总线的独立寄存器和启用 ...
发表于 10-09 10:53 33次 阅读
SN74LS652 八路总线收发器和寄存器