人工智能的落地有四个重要的环节需要解决

2018-11-06 09:13 次阅读
CSDN 出品的《2018-2019 中国人工智能产业路线图》V2.0 版即将重磅面世! V1.0 版发布以来,我们有幸得到了诸多读者朋友及行业专家的鼎力支持,在此表示由衷感谢。此次 V2.0 版路线图将进行新一轮大升级,力求为读者呈现更全面的中国人工智能产业发展概况和趋势判断。 此文为深度技术分析系列稿件第 6 篇,作者为 CSDN 特邀 AI 专家——探智立方产品总监宋煜。 人工智能会影响多个领域,甚至是那些非常传统的商业领域。而机器学习(这里指的是广义的机器学习)是人工智能的一个重要组成部分,它指的是对大数据集上的算法进行训练,以便他们学习如何更好地识别所需的模式。 近一年来,我们会看到在芯片领域,网络安全领域,语音助理领域,法律咨询领域,医疗诊断领域,制药领域,越来越多的AI技术在推动行业的发展和进步。同时,各种人工智能的比赛也层出不穷,而比赛的背后推动力实际上就是行业方案的落地能力。传统行业正越来越急迫地希望 AI 能够真正应用于实际的生产环节之中。 机器学习算法概述 随着对实际应用要求的呼声越来越大,算法层面的研究也慢慢变得清晰和细致。在今天,从技术的角度来看,人工智能的落地有四个重要的环节需要解决:数据标注问题,模型设计问题,模型训练性能问题和模型可解释性问题。 在算法层面,有大量的工作围绕这四个问题展开: ▌模型训练需要大量准确的标注数据 针对这种挑战,业界一直试图通过数学方法降低对大量数据的依赖。从减少标注的角度,非监督学习提供了不同的方法如协同训练,半监督字典学习,标签传播算法,半监督支持向量机以及阶梯(Ladder)网络。可以看到,大部分半监督学习的方法都建立在对数据分布的某种假设。如果训练数据的确真实反应了现实世界中数据分布的情况,那么就会从中受益,否则效果会大打折扣。 深度学习领域,阶梯网络试图通过一个网络把有标签的监督学习和同类但无标签数据进行共同训练,实现一个端到端的半监督深度模型。阶梯网络通过在反向传播的同时最小化有监督和无监督的损失,从而避免分层预训练的需求。通过 Skip Connection 使编码层的每一层都有一个到解码层的横向连接;同时在编码层,每一层都引入噪声以实现类似于降噪自编码器的能力。阶梯网络中,隐变量是整个模型的关键所在。分层隐变量模型可以保留较低级别的细节表示,允许更高级别的表示可以更多的关注那些不变,抽象的特征。随着技术的发展,阶梯网络也可以支持卷积神经网络。不过,技术领域从来没有万能钥匙。 当你用一个技术解决部分问题的时候,新的问题也会随之产生。在灰度和简单图像的情况下,阶梯网络效果是非常好的,但是当应用于医疗里的细胞切片分析时,性能会下降的比较厉害。类似的一些新的研究也有很多,比如 Self-Ensembling Graph Convolutional Networks 、主动学习(Active-Learning)以及 A cluster-then-label Semi-supervised learning Approach 就能够在部分标注的医学切片扫描图片上得到很好的成绩。 同时,业界也在试图利用生成对抗神经网络(GAN)生成更多的样本从而解决数据扩增问题。在低样本数据体系中,训练参数不确定,学习网络概括性差,而且带有很强的数据偏向性。使用数据扩充能够有效的来缓解这种情况。然而,标准数据增加仅产生有限的似乎合理的替代数据,并有可能引入人为指定的扩增算法的数据分布规律。对抗神经网络生成模型能够更加有效地做到数据扩增。从源数据获取、学习数据特征,然后将其推广以生成其他类内数据项。这个生成过程不依赖于类本身,因此它可以应用于新的、未曾见过的数据类。通常这种扩增可以使最后的训练结果提高10-15%。 第三个解决标注数据需求量问题的是元学习的方法。其中,One/Low-Shot Learning 变的越来越热。元学习(Meta Learning)目的并不是收敛学习的目标,如图像识别或者下棋,而是学习更高一层的内容,例如,参数设置、神经结构、神经元初始化、优化器的选择、损失函数的定义、数据空间的维度信息等。 One-Shot Learning旨在通过少数例子学习对象的概念。基于元学习的方法与生成数据模型结合,同时优化两个模型,从而提升小样本情况下的准确性。Low-Shot Learning 由一个学习器,两个 Learning Phase (Representation Learning Phase + Low-Shot Learning Phase)和一个 Testing Pase 构成。其中,学习器就是特征提取与分类的结合。 Learning Phase 的第一阶段是标准的训练过程,固定学习器的特征提取参数;去除最后的分类层,固定特征提取参数,使用少量的新类别(Noval Class)更新新类别的分类器参数;交替进行第二、三阶段。看起来似乎与迁移学习很像,但这里的关键是如何让第二阶段的表示层学习地更普适。其最大的改变是损失函数的设计,也就是让基于第二阶段的 Representation Learning 学到的权重使全局损失最小。那么,在原损失基础上加入梯度;梯度越小,说明 W(权重)的改变越小而得到的 W 也就越接近“普适”。从实际效果而言,第三种方法效果目前还不如前两种,但可以看到,第三种方法更接近人类的学习方式。 ▌模型设计和调参的难度 今天,除了数据标注的难度,在实际落地的项目中,会大量使用迁移学习方法加速模型与生产系统的对接。但是,很多时候,如果数据科学家经验不丰富或者理论理解不深入的情况下,调参和调整模型结构就进入了“玄学”范畴。实际上,从数学的角度而言,有很多新的方法试图解决这类问题。其中,最具代表性的就是自动机器学习(AutoML)。业界目前主流的几种AutoML 方法包括遗传学算法、元学习、强化学习与基于序列模型的优化(SMBO)。通常而言,数据特征抽取、模型结构优化与超参搜索是一个迭代过程。通过不停地调整从而在准确性和稳定性上达到生产环境的要求,通常这个过程占整个开发过程75%以上的时间。 作为一个新兴领域,AutoML旨在减少或消除所需的手动操作机器学习的专业知识。 基于图架构灵活地表示组合ML和DL模型的方法,提供了在极大搜索空间构建出基于树和基于堆叠的体系结构的模型的可能。加上遗传学算法的趋好性和多样性特点,AutoML能够获得在手工设计中难以获得的结构。而通常这种结果所需要的参数远小于常规模型所使用的参数数量。相比大模型剪枝后的模型,这种小参数模型移植到IoT设备上具有巨大的优势。有些AutoML系统会使用贝叶斯优化来搜索模型和超参数,确实在超参优化中有效。但是,在较大的架构搜索领域效率是很低的。而真正有效解决自动模型设计问题,遗传学演化算法会被更加频繁的使用。 相比增强学习来构建计算图的方法,遗传学算法在极大搜索空间中,效率会更高。遗传学算法会把父代中稳定的结构或者部分网络进行编码,并把这部分固化成一个片段传递给子代,让子代基于已得出的部分稳定结构继续生成网络。当然,遗传学算法也不是万能的,在模型演化过程中,如何预防整个群体的过早熟(大量子代来自于同一祖先,而导致无法跳出局部最优);如何快速从模型结构评估模型间的相似性而减少Loss 变化极小的采样;如何做有序度分析,从而找到适合遗传的部分结构这些都是实际工程化过程中要面临的问题。值得一提的是DARTS(Differentiable Architecture Search)把计算图边的选择变换成了一个连续空间求导的问题,从而大大加速了固定结构以后,边选择问题的求解。 同时我们也会看到,有大量新的专用模型的产生用于解决某一个领域的问题。强化学习,对抗神经网络和元学习,由于它们自身算法的特点会更为普遍的应用于不同的领域。 另外一些新的损失函数的研究,使得越来越多All-in-One或者All-You-Need模型解决一个甚至多个复杂问题变成可能。在强化学习方面, 通常分为RL理论,RL算法,RL网络架构,RL优化,RL探索,RL奖励,分布式RL,分层RL,多Agent,RL元学习等方向。元学习和强化学习的结合成为非常热的话题。 大部分强化学习的环境假设都是单一环境,而这种强假设就是环境固定不变,然后学习出针对这个环境的策略,但是现实环境却不是这样的,环境的变化是存在的,而且变化速度有时候会很快,比如量化交易和对抗(对手的策略也在变换)。而RL+Meta Learning的核心就是根据历史学习的经验包括策略和轨迹,来快速创建新的策略。MAML(Model-Agnostic Meta Learning)假设任务,策略和轨迹都是随机变量,上一时间步的策略和轨迹被用于当前时间步构建新的策略。使用训练数据做梯度下降更新当前网络,然后用测试数据在更新后的网络下计算损失函数,最后通过损失函数梯度下降更新前面使用的网络。这是一种适用于连续、简单、基于梯度的元学习方法,并且考虑非平稳性作为一系列固定任务和训练代理。在非平稳运动和竞争性多智能体的情况下,允许测试各种适应战略的各个方面。 生成对抗网络是另一种重要的深度学习模型。它可以用于图像优化、交互式图像生成、图像编辑、文本到图像或者图像到文本,对话生成等领域。LS-GAN(Loss-Sensitive GAN)是目前比较稳定的一种模型,能够比较好的解决梯度消失问题。另外Large-Scale GAN 通过两种简单生成架构变化以及正则化方式的修改使生成器水平得到极大的提高。当然,今天的GAN仍然面临很多问题,最严重的就是生成多样性的问题。在对话生成的过程中,随着训练的提升,生成的语言会越来越符合人的语法模式,但是同时,多样性在减少,大量能够骗过分辨器的雷同语句会被生成,而无法做到真正在NLP领域里面扩增数据内容。 在整个模型设计中,损失函数和优化器的创新恐怕是最难的而意义又是最大的。例如今年的“On the Convergence of Adam and Beyond”通过赋予Adam算法过去梯度的“长期记忆”,来解决在大输出空间,无法收敛到最优解的问题。这种算法层面的优化会直接解决大部分使用RMSPROP和ADAM优化器的网络收敛问题。 ▌模型训练的性能 模型训练一直对计算力的需求最旺盛。当数据集超过T 级或者设计了一个非常复杂的神经网络,GPU的并行化训练甚至集群的并行化训练就是不可或缺的。OpenAI的Dota 5v5模型使用了256块P100 GPU和128,000 CPU core进行训练。大规模分布式并行训练是解决这类问题的必选项。通过分级求导,在求导过程中传递不同层的梯度;通过设置双向环路,减少权重传递次数;优化参数汇聚算法;乃至模型并行化等手段都旨在不停地提高训练效率。这部分的研究工作与传统的HPC(高性能计算)其实非常相似。大家最后碰到的问题都是这种分布式难以线性叠加,当规模达到一定程度后,很难再有所提升;而收敛过程在后面的过程中,由于梯度下降本身速度已经放缓,大量的并行GPU所提升的效率就会更加不明显。由于模型并行化过于复杂,而且并行化方案难以通用,大部分并行化方案都还是训练数据并行化。 ▌模型可解释性 模型设计取得不错的性能后,解释模型又会变成一个新的挑战。今天大多数复杂的深度学习模型都是一个黑盒子。这也是深度学习在一些方面被人诟病的原因。随着业界对这个问题的争论,越来也多的可视化方法被提供试图解释模型。论文《The Building Blocks of Interpretability》将独立的神经元、分类器与可视化结合,提供一种观察方法来判断神经元可以被哪些图像激活、神经元判断这个图像属于哪一类,以及神经元的最终决策贡献值。这类方法在Attention模型中也得到比较广泛的使用。当使用LSTM 做输入文本的特征提取,用CNN 做图像特征提取后,研究人员也可以通过这种可视化的方法来分析,哪些文字让Attention单元对哪部分图像的特征图(Feature Map)敏感。从定性分析的角度看,这类方法的确可以提供对模型可解释性的指导,但是从定量分析的角度,特别是对于一些高维的数据特征,还有很长的路要走。 机器学习算法所面临的挑战及原因 今天,机器学习所面临的挑战有很多。从数据的角度来看,除了有效数据的高成本问题,还有数据不公平性问题。 通常,大家会觉得,如果算法或者模型用机器固化后,应用到实际场景会消除人为偏差,但是今天的数据如果在分布上本身就带有“歧视”,这种偏见是会被一直保持的。例如,如果训练数据表明男性比女性更有生产力,那么机器学到的判决模型很有可能将偏向选择男性候选人。而这种问题很难有一个明确的标准来衡量并纠错。从模型的角度来看,今天的大部分模型还是针对一个比较确定的环境和数据来解决问题的,这就导致了大量的实际应用不一定很快就能找到合适的模型,而是需要大量的数据科学家来对模型和真实数据做调整。 普惠AI的提出就是在试图打破这个瓶颈。而这个瓶颈最关键的问题是如何降低设计和使用模型的门槛。我们可以看到今天大部分AI的公有云服务,都在试图使用迁移学习来解决这部分问题,但是这些AI公有云服务忽略了一个问题,他们这次不是提供商品让最终消费者来选择买什么,而是需要提供一个互动的方式了解消费者要做什么之后提供对应的模型设计服务来完成这个目标。AutomML是解决这个方法的一条途径,不过同时有也很长的路要走。至于算法层面的问题,反而不是一个巨大的挑战。只要有明确的问题被提出,就一定会有新的数学方法来解决。只要我们不会进入《银河帝国》里所描述的科技发展衰退,算法层面的挑战永远不会是绊脚石。 机器学习算法的未来 未来,新的算法会层出不穷,但是深度学习不会被替代。不会替代并不意味着深度学习理论已经很完善,成为其他学科的基石。技术的发展有很强的延续性,少有被完全颠覆性的理论出现。如同今天的胶囊网络、元学习。从表面上看,他们和最初的深度学习网络模型有很大的差距。但是深入来看,实际上,它们是在使用深度学习的部分技术来构造新架构。今天大家不够满意的主要原因在于,目前的人工智能所做的仍只能停留在对单一问题的辅助,而不可能有真正的创新甚至成为复杂问题的辅助。接下来,还会有很多工作会基于不同的视角提出不同的算法。我们依然期待一个大一统的框架。然而目前的情况是视角越单一,做的效果可能会越好。毕竟视角的选择等价于人类的知识赋予,相当于简化了神经网络的学习难度。
原文标题:学习这么多算法到底在解决哪些问题?深度学习之外,我们要选择谁? 文章出处:【微信号:rgznai100,微信公众号:AI科技大本营】欢迎添加关注!文章转载请注明出处。
收藏 人收藏
分享:

评论

相关推荐

人工智能将成为城市治理的核心和大脑

2018年11月14日-18日,第二十届高交会在深圳举办。其中,智慧城市展以展示未来“人工智能+智慧....
发表于 11-15 17:39 14次 阅读
人工智能将成为城市治理的核心和大脑

真正的人工智能马桶是什么样的

当马桶遇上人工智能会碰撞出什么样的火花?只是语音控制冲水清洗?或者播放个音乐?真正的人工智能马桶应该....
发表于 11-15 17:36 12次 阅读
真正的人工智能马桶是什么样的

智能硬件目前正向混合现实迁跃

Kinect的面世,也是李骊创业的起点。他现在是3D机器视觉和3D MR(混合现实)解决方案公司华捷....
的头像 MEMS 发表于 11-15 16:43 42次 阅读
智能硬件目前正向混合现实迁跃

中美两国独角兽企业发展情况对比

截至2018年上半年,根据美国咨询公司CB Insights的数据,美国独角兽企业共有125家,估值....
的头像 全球技术地图 发表于 11-15 16:34 86次 阅读
中美两国独角兽企业发展情况对比

人工智能:复杂问题求解的结构和策略(中文版)

发表于 11-15 16:17 20次 阅读
人工智能:复杂问题求解的结构和策略(中文版)

论ADI中国在ADI全球市场中扮演的角色

ADI 中国区总裁范建人(Jerry Fan)接受了 ASPENCORE 中国区主分析师 Echo ....
的头像 亚德诺半导体 发表于 11-15 16:06 47次 阅读
论ADI中国在ADI全球市场中扮演的角色

5G智能未来的正确打开方式

11月15日,第二届国际手机产业领袖峰会,紫光展锐CTO仇肖莘在现场做重要演讲,不要错过哦。
的头像 展讯通信 发表于 11-15 16:00 56次 阅读
5G智能未来的正确打开方式

空调功能同质严重 统急待被打破

2016年即将结束的12月,长虹空调推出了行业首创的人工智能语音王空调CHiQ Q2F系列,语音对聊....
发表于 11-15 15:39 10次 阅读
空调功能同质严重 统急待被打破

机器学习入门资料之机器学习的详细资料介绍

机器学习是计算机科学的一个子领域,根据Arthur Samuel在1959年提出的,它赋予“计算机在....
发表于 11-15 15:35 11次 阅读
机器学习入门资料之机器学习的详细资料介绍

机器学习入门教程之机器学习资料合集免费下载包括了资料和复习题

机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论....
发表于 11-15 15:35 8次 阅读
机器学习入门教程之机器学习资料合集免费下载包括了资料和复习题

沃尔玛打造AI实验室;友朋智能完成3000万元A轮融资

设立这个AI实验室的目的是测试辅助技术和客服体验。例如,沃尔玛希望利用人工智能来判断存货是否充足,以....
的头像 高工智能未来 发表于 11-15 15:30 49次 阅读
沃尔玛打造AI实验室;友朋智能完成3000万元A轮融资

三角兽创始人马宇驰:三角兽做的是AI时代的「脑」

除了占尽「天时地利人和」,三角兽始终专注于自然语言理解和人机对话技术的研发与落地,三角兽重在“技术应....
的头像 机器人大讲堂 发表于 11-15 15:11 56次 阅读
三角兽创始人马宇驰:三角兽做的是AI时代的「脑」

深度学习通往人类水平人工智能的挑战

2018年11月7日晚,被称为“深度学习三巨头”之一的蒙特利尔大学计算机科学与运算研究系教授Yosh....
的头像 人工智能学家 发表于 11-15 15:07 47次 阅读
深度学习通往人类水平人工智能的挑战

小米与易华录、金山云三方将运用各自的资源优势进行全面深化合作

在进一步完善生态体系的同时,三方将运用云计算、大数据、智能硬件上的技术积累,以“城市数据湖”为载体,....
的头像 机器人技术与应用 发表于 11-15 15:06 65次 阅读
小米与易华录、金山云三方将运用各自的资源优势进行全面深化合作

谷歌云AI主管安德鲁•摩尔:与美国政府和军队合作不会停止

内基•梅隆大学有一个项目,设计了一个70英尺高的机器人,用来捡起巨大的混凝土板,并迅速建造防洪堤。这....
的头像 人工智能学家 发表于 11-15 15:00 55次 阅读
谷歌云AI主管安德鲁•摩尔:与美国政府和军队合作不会停止

如何让人工智能摆脱算法偏见

人们都曾看过电影里机器控制了世界而人类被毁灭的场景。好在这些电影只是娱乐性的,现实世界是不会发生的。....
的头像 Thundersoft中科创达 发表于 11-15 14:57 59次 阅读
如何让人工智能摆脱算法偏见

NetApp亦取代HPE成为本轮Gartner通用驱动器阵列报告中的最强供应商

作为西部数据公司旗下的新力量,Tegile目前处于挑战者区间当中,这显然是因为Gartner公司认为....
的头像 存储界 发表于 11-15 14:46 45次 阅读
NetApp亦取代HPE成为本轮Gartner通用驱动器阵列报告中的最强供应商

北师大发布人工智能+教育蓝皮书

北京师范大学未来教育高精尖创新中心执行主任余胜泉教授称,未来,包括出题在内,教师50%左右一些日常性....
的头像 人工智能 发表于 11-15 14:29 81次 阅读
北师大发布人工智能+教育蓝皮书

人工智能热潮兴起 高德智感开启红外智能化和消费化的新时代

第三轮人工智能热潮的兴起,令全球再度陷入一种技术狂欢。数据显示,2018年全球人工智能业务规模将达到....
发表于 11-15 14:04 16次 阅读
人工智能热潮兴起 高德智感开启红外智能化和消费化的新时代

《人工智能与国家安全:人工智能生态系统的重要性》报告

对于大多数两用技术而言,在过去四十年政府投资并不是那么重要,而在关键的二十年中,私营部门反而在研发中....
的头像 全球技术地图 发表于 11-15 13:13 157次 阅读
《人工智能与国家安全:人工智能生态系统的重要性》报告

怎么用Python玩GTA5?跟着教程玩!

好了,第一步,我们如何实现读取屏幕画面?我一直在想可以做,但还真没想过怎么做。所以,Google!我....
的头像 马哥Linux运维 发表于 11-15 12:55 104次 阅读
怎么用Python玩GTA5?跟着教程玩!

人工智能与可穿戴设备的结合 将会拓展人工智能的应用领域

人工智能和可穿戴设备是当今两大热点领域,二者的结合将会拓展人工智能的应用领域,增强可穿戴设备的功能,....
发表于 11-15 11:34 25次 阅读
人工智能与可穿戴设备的结合 将会拓展人工智能的应用领域

我们需要知道怎样的人工智能

智能意味着“获取和应用知识和技能的能力”。如今,机器可以做到这一点,通过机器学习和深度学习,它们甚至....
的头像 AI人工智能D1net 发表于 11-15 11:10 91次 阅读
我们需要知道怎样的人工智能

使用英特尔®至强®可扩展处理器和OpenVINO™工具包加快深度学习推理速度

除了精准医疗,越来越多的医疗机构都在使用深度学习推理来更快、更准确地查看患者的医学图像。同时,随着医....
的头像 知IN 发表于 11-15 11:07 117次 阅读
使用英特尔®至强®可扩展处理器和OpenVINO™工具包加快深度学习推理速度

百度研究院召开大会 发现了窥视人工智能的新视角

10个月前,百度研究院在硅谷召开了一场全员大会,院长王海峰宣布了两个新动态,一是设立商业智能实验室和....
发表于 11-15 10:47 331次 阅读
百度研究院召开大会 发现了窥视人工智能的新视角

福建联通积极探索5G创新业务充分利用5G网络全面助力建设数字福建

福建联通积极探索5G创新业务,充分利用5G网络带来的超带宽、低时延、巨连接等新能力,结合云计算、大数....
发表于 11-15 09:24 27次 阅读
福建联通积极探索5G创新业务充分利用5G网络全面助力建设数字福建

我国新一代信息技术的快速发展需要抓好五个方面的工作

王新哲强调,当今世界正在进入以信息通信业为引领的数字经济发展时期,加快新一代信息技术创新突破和融合应....
发表于 11-15 09:15 123次 阅读
我国新一代信息技术的快速发展需要抓好五个方面的工作

大手笔!北大要新建立一个人工智能新校区

不过,根据2017年12月29日公布的《北京大学一流大学建设高校建设方案(精编版)》,人工智能已成为....
的头像 机器人大讲堂 发表于 11-15 08:59 657次 阅读
大手笔!北大要新建立一个人工智能新校区

一栋楼和它见证的互联网创业时代

9月末的理想国际大厦,位于10层和11层的ofo小黄车总部办公室的最后一盏灯熄灭了。如今这里已经迅速....
的头像 EDA365 发表于 11-15 08:50 139次 阅读
一栋楼和它见证的互联网创业时代

如何进行卷积神经网络的细胞核智能分割研究

在许多疾病的病理学诊断中,细胞核的形状、特征的变化是病变发生与否的重要依据,利用计算机智能分割出病理....
发表于 11-14 17:34 19次 阅读
如何进行卷积神经网络的细胞核智能分割研究

如何使用蝙蝠优化算法的网络入侵检测模型提高入侵检测的正确率

网络入侵具有突发性和隐蔽性等特点,传统的技术很难描述其变化规律,这导致入侵检测正确率非常的低。为提高....
发表于 11-14 17:34 15次 阅读
如何使用蝙蝠优化算法的网络入侵检测模型提高入侵检测的正确率

以人工智能为代表的语音技术正在改变人类的交流方式

语言环境是如此的复杂,而对于那些因受伤或生病而无法说话的人,我们怎样才能更好的理解他们的想法?他们又....
的头像 嵌入式资讯精选 发表于 11-14 17:31 468次 阅读
以人工智能为代表的语音技术正在改变人类的交流方式

北京大学将在昌平建人工智能新校区

据悉,北京大学将在昌平建立一个以人工智能为特色的新校区,该校区面向未来的应用型学科和新型工科为主要发....
的头像 机器人技术与应用 发表于 11-14 17:22 616次 阅读
北京大学将在昌平建人工智能新校区

昆山芯片半导体行业的发展策略分析

“建议昆山在推动人工智能芯片等关键领域的技术发展中,实行‘跟跑、并跑、领跑’三管齐下、同时推进的发展....
的头像 MEMS 发表于 11-14 17:13 648次 阅读
昆山芯片半导体行业的发展策略分析

争分多秒的安防行业 正处于稳健增长的阶段

百度百科上对于周界报警的解释是;“对设防区域的非法入侵、盗窃、破坏和抢劫等进行实时有效的探测和报警。....
发表于 11-14 17:10 113次 阅读
争分多秒的安防行业 正处于稳健增长的阶段

创新公司纷纷推出智能音箱硬件,上演百“箱”大战

至此,国内智能音箱形成双寡头竞争时代,阿里和小米占据国内绝大多数市场份额,不过,随着百度向市场投放更....
的头像 传感物联网 发表于 11-14 16:33 204次 阅读
创新公司纷纷推出智能音箱硬件,上演百“箱”大战

华为发布人工智能HiAI 2.0平台

近日,华为在第三届华为欧洲生态大会(HuaweiEco-connect Europe)上发布面向智能....
的头像 机器人技术与应用 发表于 11-14 16:30 489次 阅读
华为发布人工智能HiAI 2.0平台

2018AI开发者大会在北京召开,捷通华声分享了所在领域的研究成果及技术应用

此次大会上最为“吸睛”的产品,莫过于捷通华声所展示的灵云全方位人工智能开放平台(AIcloud.co....
的头像 CTI论坛 发表于 11-14 16:23 895次 阅读
2018AI开发者大会在北京召开,捷通华声分享了所在领域的研究成果及技术应用

戴文渊:AI开始接管越来越多的“策略制定”工作

决策的AI化才能实实在在提升企业经营效率。企业内部的角色分成三种:高层做的是战略制定,中层的工作是策....
的头像 中国人工智能学会 发表于 11-14 15:55 265次 阅读
戴文渊:AI开始接管越来越多的“策略制定”工作

探讨可用性对人工智能技术的影响力

安德鲁·摩尔是谷歌云AI业务的新主管,这个部门致力于提供机器学习工具和技术在普通企业中的可用性和实用....
的头像 摄像头观察 发表于 11-14 15:55 353次 阅读
探讨可用性对人工智能技术的影响力

工业互联网万亿市场空间或开启 构建开放新格局

工业互联网已成当前制造业竞争的新制高点。我国工业互联网发展正迎来“政策年”,有关部委积极完善工业互联....
的头像 OFweek工控 发表于 11-14 15:29 277次 阅读
工业互联网万亿市场空间或开启 构建开放新格局

第五波浪潮来袭,如何把人工智能放进每个终端?

Arm生态系统从1991年至2016年的26年间全球共产出了1,000亿颗基于Arm技术的芯片,而从....
的头像 安芯教育科技 发表于 11-14 15:27 243次 阅读
第五波浪潮来袭,如何把人工智能放进每个终端?

AI技术将为我国教育带来深刻影响 未来3年将迎来市场应用爆发期

2018年11月10日,《人工智能+教育》蓝皮书发布会在北京举行。该蓝皮书由北京师范大学未来教育高精....
发表于 11-14 15:27 124次 阅读
AI技术将为我国教育带来深刻影响 未来3年将迎来市场应用爆发期

基于区块链去中心化POB价值贡献算法可实现用户价值的信任

基于区块链去中心化和集体维护一本账本的可靠性技术方案,2345设立了一个POB价值贡献算法(Proo....
发表于 11-14 15:15 29次 阅读
基于区块链去中心化POB价值贡献算法可实现用户价值的信任

看一看本届高交会,机器人创新生态将会秀出哪些漂亮的回旋踢吧!

优地机器人同样是今年第一次来到机器人生态的展区,作为迎宾机器人的先行者,于2016年推出第一代服务机....
的头像 机器人创新生态 发表于 11-14 15:08 151次 阅读
看一看本届高交会,机器人创新生态将会秀出哪些漂亮的回旋踢吧!

爱丁堡大学image.one推出了新一代垂直领域应用型的区块链

image.one推出的新一代区块链结合人工智能、数据挖掘等计算机科学领域的前沿技术,目标是解决图像....
发表于 11-14 15:08 24次 阅读
爱丁堡大学image.one推出了新一代垂直领域应用型的区块链

探讨我国新一代人工智能的发展之路

要深刻认识加快发展新一代人工智能的重大意义,加强领导,做好规划,明确任务,夯实基础,促进其同经济社会....
的头像 宽禁带半导体技术创新联盟 发表于 11-14 14:53 248次 阅读
探讨我国新一代人工智能的发展之路

中国超美、日成全球AI专利申请第一,自然语言处理受全球热捧

本文摘选自中国专利保护协会报告,对人工智能技术在世界范围内和在我国的专利申请数据进行了深入分析,旨在....
发表于 11-14 14:13 190次 阅读
中国超美、日成全球AI专利申请第一,自然语言处理受全球热捧

解读人工智能的未来

已历经60多年的人工智能在物联网以及大数据的推动下,实现飞跃式的发展,并且迎来了第三个黄金周期。必优传感今天和大家解读一下...
发表于 11-14 10:43 15次 阅读
解读人工智能的未来

基于BP神经网络的手势识别系统

  摘 要:本文给出了采用ADXL335加速度传感器来采集五个手指和手背的加速度三轴信息,并通过ZigBee无线网络传输来提取手...
发表于 11-13 16:04 69次 阅读
基于BP神经网络的手势识别系统

非局部神经网络,打造未来神经网络基本组件

将非局部计算作为获取长时记忆的通用模块,提高神经网络性能在深度神经网络中,获取长时记忆(long-range dependency)至关重要...
发表于 11-12 14:52 126次 阅读
非局部神经网络,打造未来神经网络基本组件

如何使用人工智能来发挥传感器数据的协同作用?

          (AI)目前正在为社会的方方面面带来革新。比如,通过结合数据挖掘和深度学习的优势...
发表于 11-09 16:11 86次 阅读
如何使用人工智能来发挥传感器数据的协同作用?

工智能取款机将取代银行柜员?

随着科技的进步以及时代的快速变迁,“人工智能”这个词汇已经逐渐进入银行业。日本一家企业研制出日本首台人工智能自动取款机...
发表于 11-09 11:32 120次 阅读
工智能取款机将取代银行柜员?

人工智能机器学习程序可分析患者肺癌肿瘤影像

美国纽约大学医学院研究者报告的一种新的美国纽约大学医学院研究者报告的一种新的人工智能/机器学习程序可分析患者肺癌肿瘤影像...
发表于 11-08 06:45 101次 阅读
人工智能机器学习程序可分析患者肺癌肿瘤影像

人工智能可检出肺癌类型

发表于 11-08 06:43 116次 阅读
人工智能可检出肺癌类型

“洗牌”当前 人工智能企业如何延续热度?

最新统计数据显示,自2017年以来,全球人工智能企业的数量激增,总数已翻了一番。这些人工智能企业已在新零售、医疗、金融、无人...
发表于 11-07 11:49 73次 阅读
“洗牌”当前 人工智能企业如何延续热度?

资深大牛认证的干货:人工智能与matlab学习资料

超10多年工作经验的资深大牛推荐的人工智能&MATLAB学习资料。 1. 主题演讲: 人工智能 & 你, 准备好了吗? 2. 《MAT...
发表于 11-06 15:47 357次 阅读
资深大牛认证的干货:人工智能与matlab学习资料