【四旋翼飞行器】76小时吃透四轴算法!史上最强软硬结合实战项目,👉戳此立抢👈

浅析自动驾驶的发展历程、市场规模态势及国内外厂家的布局

智车科技 2018-11-08 11:03 次阅读
随着科技革命的深入推进,人类社会进入万物互联、万物智能的智能化新时代。自动驾驶技术在人工智能和汽车行业的飞速发展下逐渐成为业界焦点。自动驾驶技术是汽车产业与高性能计算芯片、人工智能、物联网等新一代信息技术深度融合的产物,其本质是汽车产业的升级。如今,互联网科技巨头、大型传统车企、技术型创业公司各自依托其资金、科技、渠道资源等优势,纷纷抓住产业升级机会,切入自动驾驶领域。自动驾驶技术与传统汽车行业的竞合开始加剧,自动驾驶行业潜力初步释放,应用场景逐渐清晰。本报告对自动驾驶的发展历程、产业链图谱、市场规模态势及国内外厂家的布局进行了详细的阐述和分析。 一、行业发展概述 1、自动驾驶分级和分类 为了市场的规范管理和监督,美国汽车工程师协会(SAE)在2014年制订了一套自动驾驶分级系统,按照自动驾驶对于汽车操纵的接管程度和驾驶区域评出了L0-L5共六级的评级。 表格 1自动驾驶分级分类图 L0级完全没有机器辅助驾驶,L1级提供简单的机械性驾驶支援。初步的自动驾驶包括定速巡航、紧急制动、倒车雷达等简单技术,这些技术已经在当今的经济型轿车中普及。 L2级是较为高级的驾驶支援的技术,在L1的基础上有了较高的发展,接管了人类部分感知功能。如汽车除了具备L1级描述中的定速巡航、倒车雷达等功能外,还具备车道保持、自动变道等高级功能。 L3级的实现有赖于L0-L2级的技术积累,它带来驾驶模式的质变,促进有条件的自动驾驶实现。其与L0-L2最大的不同在于把道路环境的观察者从人变更为系统。机器已经可以完全识别出路况、交通信号、路标,和活跃着的其他车非机动车行人等障碍物,计算、处理、做出动作等机制都将由机器完成,但人仍然需要对机器状况进行实施监控,避免机器出现意外状况。 L4级的自动驾驶是在L3的基础上做出的进一步进化,驾驶员常规状况下基本不再对系统做出监控操作,只需在极端状况下对系统发出部分指令,多数情况下系统能独自应付自动驾驶。 L5级是自动驾驶的终极形态,机器的驾驶能力将远超人类,并可以应对任何极端状况,人类不再需要对车辆做出任何多余指令。 2、自动驾驶产业图谱分析 自动驾驶行业的中心业务是以Google、百度为代表自动驾驶操纵解决方案方案提供商和以特斯拉、蔚来为代表的成车厂商。该类厂商,上接上游软硬件提供商,下接公司和消费者,在整个业务链中扮演至关重要的一环。 产业链上游厂商多为细分技术提供商,如深度学习、人机交互、图像识别和新材料、新制造新能源等。 图 1 创业邦自动驾驶行业图谱 产业链下游则为没有核心技术的OEM厂商和后置服务商,智能汽车技术密集度高,后置服务链长度和宽度均较为可观。此外,信息服务和金融支付等业务对行业的支持贯穿全产业链。 3、发展历程和驱动因素分析 自动驾驶并非一个全新理念,早在1925年,就诞生了人类历史上第一辆“无人驾驶汽车”,至今已近百年。但从其出现直到21世纪初,实践进展始终较为缓慢,虽有诸多概念车推出,但在应用层面上,多数仍以倒车雷达、定速巡航的基本功能形式出现。 图 2 自动驾驶行业发展第一阶段 2015年,人工智能时代来临,自动驾驶作为最受关注的应用场景之一,受到了前所未有的关注,包括互联网公司、传统车厂、新兴科技创业公司的各类厂商如雨后春笋一般出现。当前人工智能的主要细分技术,包括计算机视觉、深度学习、传感器以及高速芯片、GPU等硬件发展均在自动驾驶领域发挥着重要的作用。 除了技术的推动,资本和政策也在自动驾驶行业的发展中也有着重大影响。 例如美国在加州等20多个州先后进行自动驾驶行业的立法后,北京市交通委员会、北京市交管局和北京市经济信息化委三部门联合印发文件,企业们可以申请在北京进行自动驾驶车辆的道路测试,这也使北京成为了中国第一个出台政策允许自动驾驶路测的城市。 图 3 自动驾驶行业发展第二阶段 4、商用领域 在自动驾驶正式民用前,大量功能相对单一、路况相对简单或不太适用于人工驾驶的商用领域将会优先实现全方面自动驾驶,而商用领域的自动驾驶实现也将会对市场进行教育,带动民用自动驾驶更快铺展。 4.1物流配送 1)长距离输送 目前长途火车超载、疲劳驾驶、交通违章等现象时有发生,但高速公路车速快、无信号灯、无障碍物的特点非常适合机器驾驶高效率却反应单一驾驶模式,特别是如京港澳、连霍高速等超长路线,可以有效规避驾驶员的疲劳因素。 2)仓储配送 在大型的仓库和超市等场景,自动驾驶机器人和可以准确、高效、低危地进行分拣、归类、入库、出库等行为,可以大量节省人工时长并降低误差。 相对于技术和路况仍显复杂的长距离输送,最后一公里的配送实现多在小区、学校、产业园等相对安全、慢速的行驶环境,危险系数较低,地图准确度相对较高。在2017年的几个购物节中,京东和顺丰等厂商已经先后试点运行了无人配送,积累了应用经验。 图 4 京东物流无人配送车 4.2共享出行 1)公交、大巴 公交、机场大巴等出行方式线路单一、发车频率高、路况平稳单一,适合目前自动驾驶的发展水平,且城市区域内地图精度较高,而在城市外也多为高速公路封闭行驶,更能发挥自动驾驶的效率。但由于法律法规、客户信任度和城区路口状况复杂等原因,距离实装尚需时日。 2)出租车 无人驾驶出租车除了更方便、快捷以外,可以有效免除大量人工成本,提高运营公司利润并降低乘客出行成本。 4.3危险工种 目前有诸多危险工种不甚适宜司机驾驶进入,如消防、易燃易爆输送、进入高污染、高辐射区域等。但危险工种的应用对于精密度要求较高,目前还处在试运营阶段。 4.4 农业机械 在机械化的基础上,自动驾驶技术在农用场景也有非常广阔的前景。农业无人器械不仅能自动驾驶,而且能以非常精确的精度进行运动,如此便可以实现喷雾或收割等活动的超低误差,提高效率,减少浪费。但在面对中国庞大的农民群体和复杂的农业耕作条件,要想全盘实现农业行业的自动驾驶,还有很长的路要走。 4.5城市日常作业 当前城市内拥有大量洒水、垃圾清运等日常作业车,该类车辆行驶速度慢、路线固定,功能简单,除自动驾驶外,也是自动作业的潜在应用场景,目前技术已经基本成熟。创业邦研究中心认为,该类日常作业车将在欧美、日本等劳动力成本高企的国家率先实现,在中国、印度等人力成本较低的新兴市场上线尚需时日,除了成本缩减不如预期外,此类日常作业放弃人工将带来大量失业人口。 二、关键技术分析 1、关键技术概述 自动驾驶行业领域的毫米波雷达、智能刹车系统等厂商将要迎来国产的收获期,而相对水平较为落后但富有潜力的两个领域是激光雷达和ADAS(高级辅助驾驶系统)。当下市场急需激光雷达和 ADAS 的低价格解决方案,对于创业公司来说是良好的切入点,该领域的新兴厂商对于投资者来说也是优质投资标的。 图 5 无人驾驶系统/ADAS系统产业链 2、激光雷达 激光雷达的原理与超声波雷达原理相似,即根据激光遇到障碍后的折返时间,计算与目标的相对距离。激光雷达的激光光束与超声波雷达的声波和毫米波雷达的电磁波相比更加聚拢,声波和电磁波在传播路径上遇到尺寸比波长小的物体时,将会发生衍射现象,因此,无法探测大量存在的小型目标,而激光雷达可以准确测量视场中物体轮廓边沿与设备间的相对距离,精度可达到厘米级别。而用于雷达系统的激光波长一般只有微米的量级,从而能够探测非常微小的目标,测量精度也远远高于毫米波雷达及其他车载标准雷达。 激光雷达是目前最为优秀同时也是技术最先进的解决方案,其识别快速、准确、稳定,但造价高昂产能有限,使很多厂商在选择激光雷达时显得较为谨慎。Velodyne在2017年11月正式公布了128线激光雷达样品,并同时表示在未来将积极提高产能和降低售价;拥有自主知识产权的国内厂商北醒也在将业务对象从无人机转向自动驾驶并推出了成品CE30,其价格约为国外厂商的1/3甚至更低,为国内车企提供了高价进口产品以外的可能性。 3、ADAS解决方案 除激光雷达外,ADAS(高级辅助驾驶系统)也是一个十分有潜力的市场。ADAS是指利用安装于车上各式各样的传感器,在第一时间收集车内的环境数据,进行静、动态物体的辨识、侦测与追踪等技术上的处理,从而能够让驾驶者在最快的时间察觉可能发生的危险。ADAS目前的主要模块为FCWS、LDW、PCW、BDS和ESC/ESP,除此之外,还有诸如VD车辆检测系统、VSA车联网系统、AP自动泊车系统和ISA电子警察系统等。 表格 2 ADAS解决方案主要功能模块 进入2017年以来,ADAS技术快速向中低端下沉,原而本局限于高端市场的系统,而现在正在中低端市场快速普及。ADAS采用的传感器主要有超声波雷达、激光雷达、毫米波雷达、搭载图像识别技术的摄像头等。可以对光、热、障碍物、温度等指标进行快速感知。对于快速发展的自动驾驶行业来说,ADAS系统将由被动式报警快速发展为主动式干预。目前ADAS领域的领先者为被英特尔高价收购的以色列厂商Mobileye,其在2016年占据了逾70%的市场份额,此外,飞思卡尔、富士通德州仪器赛灵思等厂商在ADAS领域也有不错的表现。相对于国际厂商的活跃,国内厂商在ADAS行业中仍略显低调,除了几家宣布自研的车企外,仅有中科慧眼、四维图新等厂商推出产品,并多数集中后装市场,逐渐向前装市场渗透。 三、市场规模 1、整体市场 2017年,世界汽车销量已逾9000万台,其中有26%是在中国售出,而据预测,到2020年,全球将会有超过40%的汽车在中国售出,中国将成为世界汽车市场持续增长的主要推力。 图 6 世界汽车市场规模 汽车行业经过百余年的不断继承和发展,在迈入成熟的同时,仍然在中国、印度等新兴经济体保持相当高的增速。汽车行业的产业链极长、覆盖的相关行业很广,同时其单位产品单价高、高端产品附加值高,在各大经济体中均占据重要乃至支柱地位。2017,全球乘用车整车销量超过9000万台,其中有约1/4为中国市场销售出。 创业邦研究中心预测,在未来五年全球的整车市场和自动驾驶市场将同时保持高额增长。随着中国中产阶级人数快速膨胀和汽车消费习惯的形成,以及包括特有的报废法规的政策的影响,中国汽车市场中的新增用车和替代性用车均将在未来保持较快速增长。 2、重要未成熟细分市场 汽车行业作为高度发达的行业,自动驾驶对其的改善主要在信息搜集和决策制订方面,一旦技术相对成熟,便会有大量厂商迅速跟进并竞争,创业邦研究中心认为,目前自动驾驶行业主要未成熟细分市场为激光雷达和ADAS解决方案。 2.1激光雷达市场 作为目前自动驾驶的重要瓶颈之一,激光雷达市场目前处于长期供求不对等状态。由于汽车行业的特殊性,高端汽车具备很多附加价值。目前自动驾驶汽车仍将以中低档经济型为主,而出于成本考虑,中低端厂商将很难配备高价值激光雷达,故在没有技术进步降低生产成本的前提下,激光雷达规模化生产较难实现,市场规模难以获得爆发性增长。 表格 3 激光雷达市场规模 相对于激光雷达的“高冷”,目前已经在L2以下级别大规模应用的毫米波雷达则依靠低廉的成本、成熟的设计和应用等优势,在未来三年继续保持高额增。 表格 4 毫米波雷达市场出货量 2.2ADAS 市场 根据多家国内外研究机构预测,国内ADAS市场规模在2020年将达到约220 亿人民币。从全球来看,ESC/ESP电子车身稳定功能模块在2020年将达到740亿人民币的规模,作为ADAS最有发展前景的细分组件市场,国内目前市场渗透率仅为36.94%,相比全球60.16%的市场渗透率,国内 ESC/ESP电子车身定位市场发展潜力巨大。 表格 5 ADAS市场规模预测 根据目前产业链状况,激光雷达和ADAS解决方案的发展均仍处于起步阶段,市场机会存在于下沉的低成本普及、高精度上探及性价比出色的产品和提供商。但收集数据和处理数据仍然是目前行业的发展较难攻克的问题。 四、国内外企业布局分析 数据说明:本章调研数据来自于创业邦创投库和公开信息整理,其中样本数据中,大中华区(中国大陆及港澳台)厂商173家,国外厂商165家。 1、国内企业分布 1.1 地域分布情况 中国自动驾驶行业厂商分布较为集中,北京、广东和江浙沪地区占据了绝大多数份额。该类地区是中国经济最为活跃的区域,而自动驾驶行业对于知识密度、劳动力水平和工业基础要求较高,上述地区集中了中国绝大多数优质教育资源和高端劳动力,其道路建设和其他基础设施建设也相对完备,是我国最合适发展自动驾驶的区域。 图 7 国内自动驾驶企业地域分布 日后,随着中国自动驾驶行业的进一步发展,产业集群效应将越发明显,继续向周边工业基础雄厚特别是汽车产业发达的地区扩展。 1.2 细分领域分布情况 中国市场的自动驾驶公司在各领域内分布较为平均。中国自动驾驶行业的厂商占比最多的为ADAS、驾驶解决方案方向,比例超过21%。除此之外,雷达传感器、成车制造、车载零部件等方向也有较高的占比,产业链整体分布均匀,未出现过于集中的情况。 图 8 国内自动驾驶企业细分行业分布 中国作为互联网大国和制造业大国,软硬件行业并行对于自动驾驶这一高新行业的发展而言是一个必然趋势。 1.3 融资情况 中国自动驾驶行业参与者融资状况较为分散,相当部分厂商集中在A轮前,20%的厂商从未获得融资。证明自动驾驶行业仍在发展初期,投资潜力极大。自动驾驶属于人工智能行业的衍生行业,技术门槛和资金密集度极高,投资者应慎对投资风险。 数据显示,目前还有超过20%未得到融资的初创企业,一方面有相当数量厂商还未得到投资者的垂青;另一方面也表现出投资者过去几年经历了数次的投资泡沫后,对待风口愈发谨慎。 1.4活跃投资机构典型示例 IDG资本、真格基金、英诺天使基金和北极光创投在自动驾驶领域投资相对活跃,均投资了数家具有代表性的国内公司,但其投资思路却略有不同。 细分领域不同: 其中英诺和北极光较为倾向于投资设计生产激光雷达产品的创业厂商,其认为激光雷达市场将是无人车应用推广后的一块巨大蛋糕;而IDG资本对于ADAS功能模块和解决方案厂商较为偏爱,真格基金则在全产业链上均有投资布局。 商用级别不同: 真格、英诺和北极光投资的厂商大多已推出应用产品或产品原型。应用度较高,且多数厂商并非只针对自动驾驶领域,安防、机器人、农业探测等领域的应用可能让这些厂商早于其他厂商开始变现;而IDG资本则较为注重未来,其投资的厂商多尚未发布商用产品,变现尚需时日。 2、国外企业分析 1.1 国别分布情况 在国际厂商分布中,除了占据超过半壁江山的自动驾驶大本营北美外,以色列、英国和欧洲大陆其他国家也聚集了大量自动驾驶相关的厂商。而传统汽车强国日本则在竞争中落了下风,仅有2.4%的公司分布,远低于其强大的汽车工业市场占有率。 图 10 国际自动驾驶企业地域分布 从上图可以看出,汽车工业发达、路桥配套设施完善、计算机科学领先的欧美富国仍然是自动驾驶行业分布的绝对优势地区,新兴市场印度和巴西仅占据了3.3%的份额。 1.2细分领域分布情况 国际厂商的领域分布较为平均,其中由于多数厂商和用户分布在北美大陆,成车厂商占据了最大的份额。与中国市场相比较而言,最大不同的是包括电池研发、动力技术推进等在内的新能源技术厂商占据了超过7%的份额,是为国内较为薄弱的领域。 图 11 国外自动驾驶企业细分行业分布 3、国内外科技巨头布局 科技巨头企业在自动驾驶方面的布局主要分为以下几类,以Google、百度为代表的互联网企业,在人工智能和高精度地图等方面拥有较大优势。而另一类则是以特斯拉为代表的新型汽车厂商,他们除了拥有较强的自动驾驶经验积累,其对新能源技术的应用则切中了汽车行业的另一个趋势。 4、总结 总体而言,在自动驾驶行业的初期,国内外企业的地域分布基本一致,均在向资金、高校、技术和汽车工业基础雄厚的地区集中,并将在进一步发展向周边地区扩散。相对于国际厂商,国内厂商在能源科技领域发力不足,整体更倾向于软件行业,硬件行业多集中在激光雷达等零部件厂商,成车制造领域内仍是传统汽车厂商在唱主角。 五、典型厂商分析 1、解决方案提供商-百度无人车 1.1厂商简介 百度无人驾驶车项目于2013年起步,由百度研究院主导研发,其技术核心是“百度汽车大脑”,包括高精度地图、定位、感知、智能决策与控制四大模块。其中,百度自主采集和制作的高精度地图记录完整的三维道路信息,能在厘米级精度实现车辆定位。同时,百度无人驾驶车依托国际领先的交通场景物体识别技术和环境感知技术,实现高精度车辆探测识别、跟踪、距离和速度估计、路面分割、车道线检测,为自动驾驶的智能决策提供依据。 2016年百度世界大会无人车分论坛上,百度高级副总裁、自动驾驶事业部负责人王劲宣布,百度无人车刚获得美国加州政府颁发的全球第15张无人车上路测试牌照。2017年4月17日,百度宣布与博世正式签署基于高精地图的自动驾驶战略合作,开发更加精准实时的自动驾驶定位系统。同时在发布会现场,也展示了博世与百度的合作成果——高速公路辅助功能增强版演示车。 同年的百度AI开发者大会上,百度创始人、董事长兼CEO李彦宏通过视频直播展示了一段自己乘坐公司研发无人驾驶汽车的情景。李彦宏坐在一辆红色汽车的副驾驶座位上,视频中驾驶座位没有驾驶员。在视频中,李彦宏称自己刚刚上五环,正在前往会场的路上,“车处在自动驾驶的状态”,整段视频约1分钟长。 1.2产品线及商业模式剖析 百度无人车目前的主要商业模式为自动驾驶系统研发、与合作车厂推出整车和Apollo自动驾驶平台计划。 百度已经与国内多家大型汽车制造商签订了协议,他们将共同开发车联网、高度自动驾驶技术及无人驾驶汽车等。也就是说,这些过渡产品和技术将很快能被投放市场,为终极产品“无人车”铺好道路。百度最新宣布的合作伙伴是江淮汽车,其他合作商还包括奇瑞、北汽、一汽、长安汽车和长城汽车等。百度与这五家合作商制定了相似的「三步走」发展计划:2017年12月发布车联网雏形产品,2018年发布可销售的量产产品;2018年8月发布具有较高自动驾驶能力的样车产品,2019年发布量产产品;2020年10月开发出无人驾驶汽车样车产品,2021年发布可销售的正式车型。 百度还推出了名为“Apollo”的自动驾驶平台计划,在该计划中百度试图建立一个统一的平台并对外开放,使车企和开发者根据百度提供的开放的底层数据进行针对性研发和拓展,其对外开放原则是上传数据与获取数据对等。但拥有大量数据的车企是否真正愿意将自己的核心竞争力提供给百度,则存在不确定性。 图 12 百度无人车北京五环路测试 商业模式方面,据悉,百度无人驾驶汽车整个商用过程会分为三个阶段:第一阶段是有限区域范围,简单道路状况试运营;第二阶段是3到5年内扩大区域运营;第三阶段是实现全市运营。 1.3总结 百度作为国内巨头公司,其无人驾驶业务开展较早,在知名度方面拥有较大优势,并有大量渠道、人才、技术、导航数据等资源,与地方政府关系也较为紧密,在各维度中均处在领先位置。 百度无人车在转型解决方案提供后,陆续签下多个合作车厂,可以较为全面地评估汽车在汽车成型后各家车厂的优劣势、也能够丰富产品线、给予消费者更多的选择。此外百度由于渠道优势,在产品成型后推广成本相对较低。但百度重要合作伙伴宝马在2017年与百度提前终止合作,转向其竞争对手,对百度的品牌和数据积累造成较大损失。 用户对百度认知度较高,百度的地图和导航业务的日趋成熟为百度无人车的上线提供了高精度地图支持和大量驾驶数据参考。且百度在无人车市场布局较为全面,技术和法规成熟后可能会迅速占据市场。但近年来百度品牌负面消息较多,对品牌形象有一定伤害。此外,百度集团对无人车计划持续的高额投入和Apollo平台计划对车企数据的强需求,包括自动驾驶行业变现时间的不确定性,也使百度的无人车计划可能遇到挫折。 2、整车厂商-蔚来汽车 2.1厂商简介 2014年11月,蔚来汽车由李斌、刘强东、李想、腾讯、高瓴资本、顺为资本等互联网企业与企业家联合发起创立,并获得淡马锡、百度资本、红杉、厚朴、联想集团、华平、TPG、GIC、IDG、愉悦资本等数十家知名机构投资。蔚来汽车目前已在圣何塞、慕尼黑、伦敦、上海等13地设立了研发、设计、生产和商务机构,拥有数千名汽车、软件和用户体验的员工。 2016年11月21日,蔚来汽车在伦敦发布了英文品牌“NIO”和电动汽车产品EP9。2017年4月19日,蔚来汽车携11辆车亮相2017上海国际车展,成为国内首秀。同年9月9日,蔚来汽车创始人李斌出席2017泰达国际论坛期间,宣布ES8将于今年12月正式上市。基于汽车续航这一痛点,蔚来汽车推出电能服务体系NIOPower和加点产品移动充电车。到2020年,蔚来汽车计划在全国建设超过1100座换电站,同时投放超过1200辆移动充电车。 2.2产品线及商业模式剖析 蔚来汽车的主要商业模式是成车销售、换电和充电服务。2017年12月正式发布了整车ES8,该车为定制化生产,基础款补贴前售价44.8万元,而首发限量1万台的创始版车型补贴前售价54.8万元,首批新车将于2018年3月交付。该车为纯电动中大型7座SUV,可以享受国家和地方的新能源补贴以及减免购置税政策。 表格 11 蔚来ES8价格详情 蔚来汽车除整车销售外,其换电服务NIOPOWER也是产品线重要盈利点。ES8搭载可换电架构,蔚来换电站能在3分钟内完成换电,同时也拥有专属桩、超充网络及移动充电车等整体加电解决方案。其中,移动充电车是蔚来全新研发的一款加电产品,能做到10分钟充电便能续航100公里。蔚来计划在2020年全国建设超过1100座换电站,同时投放超过1200辆移动充电车。 蔚来汽车的AI方案则是内置在其成车产品中,其ADAS方案中集成了一个三目摄像头、四个环视摄像头、五个毫米波雷达和十二个超声波传感器,此外还有一个驾驶状态检测摄像头,但并没有使用激光雷达。能力在L2级别左右。除此之外,ES8也打在了一个人车交互系统NOMI,可以进行一些交互行为,代替驾驶员进行诸如开关车窗、后备箱,播放音乐等功能。 图 13 蔚来汽车人工智能系统 蔚来商业模式在汽车销售外是基于老用户和长尾附加价值运行:蔚来试图提供汽车以外附加值,如服务、合作商铺等,并不断改善加电的方式和体验,以此使用户长期停留在蔚来所提供的服务中,延长客户对蔚来的依赖时间,用包括特有的换电服务在内的长尾服务增强用户粘性和传播度。 2.3总结 蔚来汽车的前景被多个优质投资者一直看好,蔚来汽车在获取资金的同时可以从投资者渠道获取多种资源。其与长安、江淮等厂商保持紧密合作,可以确保汽车产量和质量。但据已公开的信息来看,蔚来汽车使用了全铝车身主动悬挂等高难技术,代工厂是否愿意为蔚来汽车在高难技术上投资也是一个隐患。 蔚来汽车是率先推出换电模式成车的厂商,获得舆论呼声较高,广告效应明显。但换电模式对于成本要求巨大,地推相对困难,且维护和运营成本将长期维持在高位。高位成本将导致其售价较高,同价位段竞品丰富,甚至接近豪车价格,在粉丝和冲动型消费者购车完毕后中长期销量可能受到影响,并且难以通过规模化生产降低成本。 政策方面,政府机构特别是北上广深等城市对新能源国产车扶持力度较大,除补贴外,民用轿车指标管控也日趋向新能源车倾斜,但国产新能源车行业行业竞争激烈,蔚来汽车目前技术和商业壁垒并非高筑,较容易被巨头模仿乃至超车。 作为首家推出量产车型的互联网厂商,蔚来汽车的的产品、设计、股东背景和发布时机均属上乘,但蔚来汽车作为行业搅局者,并未做出太多革命性的创新,高昂的售价和来势汹汹的竞品,以及高企的运营成本,均是蔚来将面对的难题。 3、整车厂商-奇点汽车 3.1厂商简介 智车优行科技有限公司是一家创新型互联网公司,成立于2014年12月。公司业务范围涵盖了新能源汽车、智能汽车系统、基于大数据与云计算的车联网服务和解决方案、创新技术产品的投资等。 2017年4月13日,奇点汽车在北京发布了旗下首款量产车型——奇点iS6预览版。其定位于纯电动中大型SUV,可实现400公里续航里程,支持换电模式,提供五座及七座两种版本选择,并搭载多项人机交互配置。目前,该车分为城市版和运动版两款车型。据悉,奇点IS6于通年底以与整车厂代工合作的方式实现小批量量产,2018年正式上市,售价区间为20-30万元。 3.2产品线及商业模式剖析 除成车产品外,智车优行推出了一套主动安全系统,其包括了ADAS系统、防疲劳驾驶系统、以及夜视系统。其中,智车优行与地平线机器人合作研发的ADAS系统可以进行车辆检测、车道线检测以及行人检测等功能。 此外,智车优行与日本电动超跑公司GLM进行了合作,从GLM引进了曾用在高级跑车上的优质三电技术。奇点汽车可以通过车内的“CAN+以太网+无线设备”组合打通各个传感器和执行器;此外汽车还将配合CPU、以及云服务实现汽车与人的连接。整车控制器VCU和电池管理系统BMS可以进行自适应调整;而系统也将推送最佳的出行路线;并根据用户日程的同步,提前提供相关的生活服务。 人机交互设计功能,奇点与SHARP等企业合作,为奇点汽车配备可定制化的车规级液晶中控和仪表;同时,还将与HUD企业异视科技共同研发出一款超高清、低功耗的HUD系统;并与思必驰科技一起研发一套自主语音交互系统。 商业模式方面,奇点汽车管理层认为汽车就是硬件市场最大型的消费品。奇点汽车无限认同小米模式--硬件不赚钱,通过软件和运营服务赚钱。奇点汽车摒弃了过去传统车企在卖车后就与用户失去了联系的模式,不仅希望在售后与用户保持联系,更增加了更多商业可能性,收入很可能来自用户之外的各种第三方。 3.3总结 奇点汽车公布的iS6售价仅为20-30万元,其配置则与40-50万的车型相当,会吸引大量对性价比敏感的消费者购买。其与多个软硬件厂商在自动驾驶领域展开合作,并能发挥一定的平台优势。但其公布的高压直流充电方案该方案在家庭场景基本不适用,而充电站布局成本则相当高。 奇点汽车公司高管具有360系背景,在互联网营销领域人脉和商业模式方面的成功经验均能使公司收益。此外,国家层面和发达城市对新能源国产车扶持力度较大,除补贴外,民用轿车指标管控也日趋向新能源车倾斜,销量潜力较大。但由于其已公布的iS6低价高配的特点,发售后若其他盈利模式并未奏效,成本压力对公司冲击将比较大。此外,目前公开的信息多为软件和设计方面,其结构参数较为含糊,对很多消费者会造成困惑。 作为即将在2018年推出量产车型的互联网厂商,奇点汽车的开放性、合作性和商业模式均是领域内的佼佼者,其20-30万元的售价也是远低于几个竞争对手,更贴近对自动驾驶汽车亲和的年轻群体,但其在价值链内多处隐藏的成本问题,也将不容厂商和消费者忽略。 4、芯片和算法提供商-地平线机器人 4.1厂商简介 地平线是一家嵌入式人工智能解决方案提供商。地平线面向自动驾驶、智能生活和智能城市等应用场景,为自动驾驶汽车与智能摄像头等终端设备提供从感知、交互、理解到决策的智能。 地平线机器人已获得包括英特尔投资、嘉实投资、晨兴资本、高瓴资本、红杉资本、金沙江创投、线性资本、创新工场、真格基金、双湖投资、青云创投、祥峰投资等大量著名投资机构以及硅谷投资家Yuri Milner的投资。 2017年12月20日,地平线机器人分别针对自动驾驶以及嵌入式智能视觉处理推出了征程与旭日两款处理器,并提出了雨果3.0平台,主要服务车用和即将到来的安防、商业市场。 4.2产品线及商业模式剖析 地平线机器人的产品主要是围绕在图像识别算法为核心的方案上,包含征程处理器以及旭日处理器两款人工智能视觉处理器。并且根据应用类型,将这两款视觉处理器包装成三种不同的方案:自动驾驶解决方案、智能城市解决方案和智能商业解决方案。 其中自动驾驶解决方案中,地平线机器人的ADAS系统早已发布,该系统基于单目摄像头与FPGA芯片,算法则是基于高斯架构开发,原本的功能就已经包含了主要的行人、车辆、车道线和可行驶区域的检测和识别。后来也增加了代客泊车功能,并成功完成路测。依靠新款征程视觉处理器的辅助,地平线机器人ADAS系统在统合算法、芯片以及云等环境之后,可以同时对行人、机动车、非机动车、车道线、交通号志以及红绿灯等,进行准确的实时检测与识别能力,可达到完整的L2级别ADAS辅助驾驶能力。而从中央芯片到视觉处理器搭配而成的整套方案的雨果平台,目前支持的功能包含了感知、三维环境模型重建以及最终的驾驶决策部分。 4.3总结 地平线机器人属于技术驱动型公司,创始人及高管技术背景浓厚,融资顺利,获得大量优质投资者垂青。其芯片产品技术水平较高,推出的自研芯片可以达到1Tops/1.5W水平,产品线丰富,有针对于自动驾驶、安防和智能家居三个领域的不同产品。但其潜在竞争对手多为NVIDIA等巨头厂商,竞争相对激烈。 国产厂商价格优势明显,中国为制造业大国,未来大量智能家居、无人车产品和安防产品都将为中国制造,市场潜力巨大。除此之外,国家及地方政府目前大力扶持国产芯片厂商,地平线机器人将获得大量政策支持和优惠。专注的行业市场铺开均尚需时日,在此之前盈利情况不明朗。 我国是世界上最大的芯片产品消费使用国,但各行业芯片产品极度依赖进口,供应链有巨大的缺口,地平线机器人成功推出的自研产品使中国芯片的自研化程度迈上了一个崭新的台阶。但地平线机器人作为一家创业公司,除创业公司竞品外,在芯片市场还将面对更为强力的巨头对手竞争。 5、限定区域解决方案提供商-智行者 5.1厂商简介 北京智行者科技有限公司成立于2015年,聚焦于无人驾驶汽车领域。智行者公司拥有近20项专利,已为多家车厂提供自动驾驶智能汽车整体解决方案。 智行者自成立以来先后与北汽、上汽等国内大型车厂合作,联合推出多款无人驾驶样车,成为国内提供无人驾驶系统解决方案最多的企业。其开发的无人驾驶车辆在高速路和国道进行了规模化测试,累计测试里程超过30万公里。目前已实现L3级别的自动驾驶,包括在高速行驶过程中的自动换道等功能。 2017年6月,智行者公布了其低速无人驾驶领域的“蜗”系列产品,包括载人通勤车辆、无人物流配送车辆、无人作业车。产品搭载自主研发的AVOS系统,采用多传感器自适应融合算法、环境认知算法、路径规划算法以及独特的控制算法来满足智能行驶的需求。通勤车、作业车适用于办公园区、工业园区、景区、校园等限定场景。 5.2产品线及商业模式剖析 智行者目前业务专注于自动驾驶智能车中央决策系统开发及大系统集成,尤其是限定区域内的低速无人驾驶垂直应用领域,在无人物流配送和无人作业车两个方向目前已经得到使用,未来将先后拓展到包括客车和货车等应用的商用车领域,最终拓展到乘用车领域。 智行者的无人物流配送车采用的是多线激光+差分GPS的环境感知系统,搭载了智行者研发的AVOS系统,同时使用嵌入式低成本方案,其已能适应复杂环境下的应用。除无人物流配送车外,智行者已为多家车厂提供自动驾驶汽车的整体解决方案。其无人车已在高速路和国道进行了规模化测试。 5.3总结 智行者科技部分高管有创立ADAS公司经验,有着丰富自动驾驶产品化的经验和数据积累,目前已经推出“蜗”系列低速配送产品并进行了一定程度上的场景应用,整体产品化程度较高。 智行者科技专注与驾驶系统的开发,平台、硬件等配套设施均与百度等巨头厂商合作,取长补短,可以共享技术进步成果。且短期内物流配送行业启动无人化配送的几率很高,行业需求旺盛。但中国电子商务等行业发展迅速,特别是一二线城市几乎已实现“全民网购”,无人配送等业务将对接各年龄段、教育水平用户,其易用性和市场教育成本或将受到挑战。除此之外,无人设备在部分地区可能会受到破坏和盗取。 作为低速商用业务,智行者的相关产品相对于其他领域上市快、成本低、安全系数高、应用领域广,十分适合自动驾驶的早期应用。特别是在简单、特定场景的应用中,智行者找到了撬动整个市场的支点。 六、行业趋势预测和投资机会分析 1、行业趋势预测 伴随着关键技术的不断迭代更新,创业邦研究中心认为全球L1-L5自动驾驶市场的渗透率会在接下来5年内来到快速增长期,随后随L3技术成熟而进入稳速增长期。在来到2025年无人驾驶放量阶段后,依赖全产业链的配合而进入市场成熟期。预测到2030年,全球L4/5级别的自动驾驶车辆渗透率将达到15%,单车应用成本的显著提升之外,从L1-L4级别的自动驾驶功能全面渗透为汽车产业带来全面的市场机会。 按HIS Automotive估计,全球L4/L5级的自动驾驶汽车产量在2025年将达到60万辆左右,并将在2025-2035年间继续获得高速发展,在此期间内,行业复合增长率将高达43%,并有望在2035年达到年产2100万辆L4/L5级汽车,另有接近7600万辆的汽车具备部分自动驾驶功能,高速带动产业链衍生市场的大规模催化扩张。 2、投资机会分析 机会1:低成本激光雷达方案 作为目前车载传感器方案中最昂贵的解决方案,其具有精度高、性能好、成像快等特点,但其造价过高导致目前推广普及困难、产能较小。未来,激光雷达固态化、小型化、量产化、低成本化的趋势十分明显。目前特斯拉等大厂均尚未采用激光雷达方案,因此作为将来自动驾驶的核心配件来说,若有低成本的量产化激光雷达方案可提供,将是一块十分诱人的蛋糕。 机会2:多传感器融合方案公司 表格 13 部分传感器性能对比 如上图所示,摄像头、毫米波雷达和激光雷达各类传感器的功能和性能各有优劣,相互之间互补性大于替代性,特别是摄像头可以在图像识别技术快速发展的今天实现很多信息输入,若能高效整合多种传感器以进行解决方案推出,自动驾驶的安全性、易用性均将有质的提升。 机会3:物流行业的无人驾驶应用 物流领域的无人驾驶应用,使用物流无人驾驶有能解决物流行业以下问题:路线较为固定,降低了环境的复杂性,有利于提升无人驾驶的安全性;该细分领域司机疲劳驾驶的情况比较明显,无人驾驶可以提高其安全性;有效降低运营的人力成本,提升行业效率。且中国目前发达的电商零售行业对物流行业压力较大,亟需机器介入。目前多家电商和快递公司已经开始实行无人快递车和无人机的运输试点,该行业市场广阔、快速变现可能性较大。 机会4:率先面向国内车企提供服务的自动驾驶车载集成系统商 国内市场中,国产ADAS厂商和车企仍然在中低端市场发力,而高端市场则长期被Mobileye等国际巨头占据。 而对国内中低端车企来讲,物美价廉的ADAS系统供应商对与其快速推出成品起着至关重要的作用。目前北京已经颁布自动驾驶相关法律,对成车的安全性要求有了明确要求。未来国内端ADAS有了市场规范的要求后,产品将会明确的发展方向,整体市场容量将随之进入快速上升通道,依托中国企业的规模化优势和学习能力优势,将快速崛起成为ADAS行业的最大提供商群。 机会5:快速整合自动驾驶系统并推出产品的制造商 虽然在自动驾驶领域,新兴企业特别是科技企业获得了前所未有的表演机会,但消费惯性和品牌形象等原因,大量消费者特别是更富裕的中老年消费者仍会更青睐中高端传统汽车厂商。 Auto Trader research 在2017年初对英国用户进行的一份调查显示,福特、奥迪等厂商超过特斯拉,在选择倾向中位列前茅,而前十除了大热的特斯拉以外,也只有Google一家科技类企业上榜。传统汽车制造业在群众认知中仍然具有较大优势。 表格 14 英国消费者对自动驾驶汽车的品牌偏好 但汽车厂商普遍规模大,价值高,投资成本较高,投资者在进入该领域时应谨慎考虑自身财力和目标潜力。 图 14 各厂商自动驾驶实力矩阵图
原文标题:深度干货 | 2018自动驾驶行业研究报告 文章出处:【微信号:IV_Technology,微信公众号:智车科技】欢迎添加关注!文章转载请注明出处。
收藏 人收藏
分享:

评论

相关推荐

EdgeBoard终端计算加速方案可以应用在哪里

深度学习软硬一体化加速方案,具备模型剪枝&量化加速工具,能将原始模型性能提升 4 倍以上。高性能的加....
发表于 02-23 11:11 14次 阅读
 EdgeBoard终端计算加速方案可以应用在哪里

中国有可能成为L4技术以及相关应用的世界领导者

本文核心观点:中国有可能成为L4技术以及相关应用的世界领导者;在2030年,中国极有可能成为世界最大....
的头像 智车科技 发表于 02-23 11:05 397次 阅读
中国有可能成为L4技术以及相关应用的世界领导者

攀登深度学习之巅 对AI领域会产生什么深远影响

2018 年,由美国国家能源研究科学计算中心 (NERSC) 与 NVIDIA 组成的联合团队取得了....
的头像 TensorFlow 发表于 02-23 10:54 401次 阅读
攀登深度学习之巅 对AI领域会产生什么深远影响

警察怎么让自动驾驶汽车停下

公司方面表示,每辆特斯拉都配备了硬件,使得其车辆能够在整个行驶过程中进行自动驾驶,期间不需要人工司机....
发表于 02-23 10:50 57次 阅读
警察怎么让自动驾驶汽车停下

Waymo自动驾驶汽车可探测交警并理解人类手势

对自动驾驶汽车持怀疑态度的人可能担心自动化的软件无法处理意外的、不寻常的情况,例如,如果主要交叉路口....
发表于 02-23 10:46 34次 阅读
Waymo自动驾驶汽车可探测交警并理解人类手势

盘点全球征战自动驾驶芯片领域的参与者

据了解,目前出货量最大的驾驶辅助芯片厂商Mobileye、Nvidia形成“双雄争霸”局面,Xili....
的头像 智车科技 发表于 02-23 10:41 1040次 阅读
盘点全球征战自动驾驶芯片领域的参与者

智能影像技术加速产业数字化变革

近日,Forrester咨询公司对中国计算机视觉及智能影像市场进行了调查,访问了包括研究机构、科研院....
的头像 电子发烧友网工程师 发表于 02-23 09:46 163次 阅读
智能影像技术加速产业数字化变革

Uber和Cruise开放可视化软件 自动驾驶开源策略需慎重对待

百度Apollo是自动驾驶领域的第一个免费的开放平台,从Apollo的官方网站可以看到,目前开放的范....
发表于 02-22 17:05 71次 阅读
Uber和Cruise开放可视化软件 自动驾驶开源策略需慎重对待

尽管苹果闭口不谈 但媒体还是挖到了苹果自动驾驶的背后故事

当谈及苹果公司的自动驾驶汽车计划时,人们脑海中浮现的第一个词就是“神秘”。
发表于 02-22 16:58 131次 阅读
尽管苹果闭口不谈 但媒体还是挖到了苹果自动驾驶的背后故事

汽车仪表盘那双“眼睛”,环境光传感器到底有哪些作用及功能?

汽车仪表盘上有一双“眼睛”默默地感知周围的光线,从而自动调节背光亮度,以保证用户最佳的驾驶体验且降低功耗。那么,汽车仪表...
发表于 02-22 16:32 250次 阅读
汽车仪表盘那双“眼睛”,环境光传感器到底有哪些作用及功能?

拆解华为的自动驾驶和电动汽车关键技术

华为到底造不造车?任正非曾明确表态:“华为永远不会造汽车。我们是有边界的,以电子流为中心领域,非这个....
的头像 汽车工程师 发表于 02-22 16:17 576次 阅读
拆解华为的自动驾驶和电动汽车关键技术

华为发布自动驾驶移动网络系列化解决方案

华为在2019世界移动大会伦敦预沟通会上正式发布“自动驾驶移动网络”系列化解决方案,助力5G时代网络....
的头像 华为无线网络 发表于 02-22 15:03 416次 阅读
华为发布自动驾驶移动网络系列化解决方案

自动驾驶的融资是否会持续_在2019年的发展预期如何

进入2019年,几笔大额的自动驾驶的融资引入注入,国外Aurora和Nuro分别5.3亿美元和9.4
的头像 汽车电子设计 发表于 02-22 10:24 218次 阅读
自动驾驶的融资是否会持续_在2019年的发展预期如何

一文汇总中国自动驾驶测试存在的问题及建议

截至 2018 年 12 月 25 日,全国共有 15 个省市区出台了自动驾驶测试管理规范,其中有 ....
的头像 智车科技 发表于 02-22 09:56 377次 阅读
一文汇总中国自动驾驶测试存在的问题及建议

深度学习中的各种卷积网络大家知多少

对于那些听说过却又对它们没有特别清晰的认识的小伙伴们,这篇文章非常值得一读。Kunlun Bai 是....
的头像 人工智能学家 发表于 02-22 09:44 368次 阅读
深度学习中的各种卷积网络大家知多少

深度学习只是人类探索智能的历史上的一个插曲

时至今日,几乎你所有听到的关于 AI 的重要进展,背后都离不开深度学习。这类算法的工作原理是使用统计....
的头像 电子发烧友网工程师 发表于 02-22 09:16 329次 阅读
深度学习只是人类探索智能的历史上的一个插曲

Uber和Cruise开源自动驾驶的可视化工具 并试图将这些技术作为标准

了解自动驾驶车辆在城市环境中行驶时的感知,对于开发能使其安全运行的系统至关重要。而且,就像我们有帮助....
发表于 02-21 17:12 118次 阅读
Uber和Cruise开源自动驾驶的可视化工具 并试图将这些技术作为标准

盘点资本加速洗牌对人工智能行业的影响

自2017年以来,深度学习概念被再次提起,AI成为全球最炙手可热的行业。不论是从创业项目数量、融资金....
的头像 重庆人工智能 发表于 02-21 16:04 462次 阅读
盘点资本加速洗牌对人工智能行业的影响

计算机视觉应用场景多样 成安防重要应用方向

随着计算机视觉技术的应用随处可见,其应用需求也存在着巨大潜力,安防企业只需要不断深入场景促使技术落地....
的头像 视频监控安防D1net 发表于 02-21 15:53 252次 阅读
计算机视觉应用场景多样 成安防重要应用方向

MIT深度学习基础知识 编码器-解码器架构分析

本文以 7 种架构范例简要介绍深度学习,每种范例均提供 TensorFlow 教程链接。
的头像 TensorFlow 发表于 02-21 15:53 197次 阅读
MIT深度学习基础知识 编码器-解码器架构分析

特斯拉的全自动驾驶功能将在2019年底前完成

埃隆•马斯克(Elon Musk)对大胆预测并不陌生。近日,他又向自动驾驶技术的怀疑者抛出了另一个大....
的头像 高工智能汽车 发表于 02-21 10:40 586次 阅读
特斯拉的全自动驾驶功能将在2019年底前完成

车载摄像头全景观察及未来预测

计算机视觉是指通过计算机及其相关设备模拟人的视觉系统,通过对采集的图片或视频进行处理以获得相应场景的....
发表于 02-21 10:27 502次 阅读
车载摄像头全景观察及未来预测

深度学习可能需要比Python更灵活更易于用的新编程语言

尽管工程师们普遍定位 Python 是简单、优雅的编程语言,但它并非毫无缺点,比如人们一直吐槽它的执....
的头像 电子发烧友网工程师 发表于 02-21 10:23 326次 阅读
深度学习可能需要比Python更灵活更易于用的新编程语言

对驾驶行为的学习以及对其他车辆驾驶的预测

自动驾驶里面很重要的就是估计和预测交通情况。预测的来源就是路上各种物体的姿态和速度历史,高级的预测会....
的头像 智车科技 发表于 02-21 10:11 204次 阅读
对驾驶行为的学习以及对其他车辆驾驶的预测

难以处理的组合爆炸问题正是深度神经网络的致命弱点

需要大量的注释数据;难以在标准测试集外取得良好表现;对于数据的微小变化尤为敏感。这都是近年来深度学习....
的头像 电子发烧友网工程师 发表于 02-21 10:00 664次 阅读
难以处理的组合爆炸问题正是深度神经网络的致命弱点

大咖云集探讨自动驾驶落地 第二届全球自动驾驶论坛开幕日速递

2019年2月20日,以“智能驾驶 改变未来”为主题的第二届全球自动驾驶论坛正式开幕。论坛由盖世汽车....
的头像 章鹰 发表于 02-21 09:25 1207次 阅读
大咖云集探讨自动驾驶落地 第二届全球自动驾驶论坛开幕日速递

盘点2019年人工智能行业25大发展趋势

知名创投研究机构CB Insights调研了25种最大的AI趋势,以确定2019年该技术的下一步趋势....
的头像 电子发烧友网工程师 发表于 02-21 08:58 826次 阅读
盘点2019年人工智能行业25大发展趋势

2019年自动驾驶进入了年烧钱10亿美元的级别

在创投领域,吸引眼球最多的自然的融资,尤其是大金额的融资,猪年自动驾驶领域最新就是Aurora和Nu....
发表于 02-20 16:11 134次 阅读
2019年自动驾驶进入了年烧钱10亿美元的级别

在自动驾驶汽车以及电动汽车领域 华为会有哪些优势呢

屡屡爆出猛料的博主曹山石,最新的一个爆料是关于华为汽车,按照曹山石的说法,华为轮值CEO在内部表态,....
发表于 02-20 16:07 263次 阅读
在自动驾驶汽车以及电动汽车领域 华为会有哪些优势呢

机器人创新生态合作伙伴云迹科技宣布完成B轮融资

我们投资云迹科技的最重要的原因是公司是目前为数不多的能够将机器人技术、自动驾驶技术、以及图像及语音识....
的头像 机器人创新生态 发表于 02-20 15:30 1961次 阅读
机器人创新生态合作伙伴云迹科技宣布完成B轮融资

博世公布2018年度财务报告,集团去年销售额增长1.5%

博世首席执行官Volkmar Denner说:“我们一直对其他公司成为合作伙伴持开放态度,我们也进行....
的头像 高工智能汽车 发表于 02-20 15:02 2059次 阅读
博世公布2018年度财务报告,集团去年销售额增长1.5%

人工智能行业即将迎来寒冬

深度学习处于所谓的AI革命的前沿至今已有好几年;许多人过去认为,深度学习是神奇的“银弹”,会把我们带....
的头像 人工智能学家 发表于 02-20 14:48 523次 阅读
人工智能行业即将迎来寒冬

美国大学研发出拥有自主意识的机器人

美国哥伦比亚大学的研究团队发表了一项新成果:一个机器人(机械臂)有了“自我意识”。这项研究成果发表在....
的头像 机器人技术与应用 发表于 02-20 14:40 272次 阅读
美国大学研发出拥有自主意识的机器人

如何同时使用Nucleus与TensorFlow解决基因组学领域的机器学习问题

本文中阐述的两种方法均使用深度神经网络,学习将输入映射至输出的函数。神经网络由若干层线性与非线性运算....
的头像 TensorFlow 发表于 02-20 14:38 234次 阅读
如何同时使用Nucleus与TensorFlow解决基因组学领域的机器学习问题

从文本(数据)挖掘的角度去“探索”全唐诗

然而,对于古汉语(文言文),尤其是诗词的分词处理可没有这么简单,因为单字词占古汉语词汇统计信息的80....
的头像 悟空智能科技 发表于 02-20 14:23 162次 阅读
从文本(数据)挖掘的角度去“探索”全唐诗

深度解析计算机视觉技术

近年来,基于生物特征(biometrics)的鉴别技术得到了广泛重视,主要集中在对人脸、虹膜、指纹、....
的头像 传感器技术 发表于 02-20 14:18 304次 阅读
深度解析计算机视觉技术

计算机视觉市场持续增长 成安防重要应用方向

计算机视觉作为人工智能的一个重要分支,在中国AI市场组成部分占比巨大,随着人工智能领域融资不断扩大和....
发表于 02-20 13:46 73次 阅读
计算机视觉市场持续增长 成安防重要应用方向

低成本AVP方案的车端和场端路径选择

一、 AVP成为自动驾驶率先落地的应用不同于面向开放城市、高速工况的L4/L5级自动驾驶乘用车,低速且车中无人的自动代客泊车...
发表于 02-20 11:26 82次 阅读
低成本AVP方案的车端和场端路径选择

自动驾驶领域受资本追捧 竞争燃烧至即时配送市场

现在不管是谷歌、亚马逊、百度、阿里、腾讯等互联网巨头,还是丰田、宝马、特斯拉、奔驰等传统车企都在涉足....
的头像 1号机器人网 发表于 02-20 10:08 456次 阅读
自动驾驶领域受资本追捧 竞争燃烧至即时配送市场

制造电动汽车和可重复使用的火箭相当容易

无论别人说哪一项技术会成为下一个爆点,我们都要正确估计其难度。如果某个想法是建立在实际经验的基础之上....
的头像 IEEE电气电子工程师学会 发表于 02-20 10:02 616次 阅读
制造电动汽车和可重复使用的火箭相当容易

设计一套自动驾驶系统,如何确保摄像头进行可靠通信?

汽车正在快速演化成一台安全联网的自动驾驶机器人,能够感测环境、进行思考并采取自主措施。变化更快的也许是小型自动驾驶公共车...
发表于 02-20 09:29 178次 阅读
设计一套自动驾驶系统,如何确保摄像头进行可靠通信?

2018年DMV自动驾驶脱离报告出炉

近日,加州机动车管理局(DMV,Department of Motor Vehicles) 公布了 ....
的头像 智车科技 发表于 02-19 16:38 1223次 阅读
2018年DMV自动驾驶脱离报告出炉

深圳人脸识别公司海量数据泄露,250万用户信息被“裸奔”

数据显示,Uber、苹果的自动驾驶情况表现最差,分别排名倒数第一、第二,Waymo则表现最好:在加州....
的头像 甲子光年 发表于 02-19 15:32 4118次 阅读
深圳人脸识别公司海量数据泄露,250万用户信息被“裸奔”

详解Mobileye自动驾驶进阶之路

每年的 CES 上,Mobileye 不仅仅会回顾总结去年的发展、展望下一年的发展,还会对本行业的发....
的头像 知IN 发表于 02-19 14:32 698次 阅读
详解Mobileye自动驾驶进阶之路

毕马威发布2019自动驾驶汽车成熟度指数报告

北京时间2019年2月11日晚,Nuro宣布完成来自软银愿景基金的9.4亿美元融资。新一轮融资将用于....
的头像 智车科技 发表于 02-19 14:12 814次 阅读
毕马威发布2019自动驾驶汽车成熟度指数报告

软银投资基金,自动驾驶物流事业未来可期

美国研发无人物流相关机器人技术的新创公司,设立于美国加州的Nuro,在2019年2月11日宣布,得到....
发表于 02-19 12:48 338次 阅读
软银投资基金,自动驾驶物流事业未来可期

特斯拉自动驾驶让撞车几率大降40%?水分不小

数据集中的其他车辆还存在一个更微妙的问题。特斯拉为汽车提供了两个不同的数据点:分别是在Autoste....
的头像 新智元 发表于 02-19 09:14 430次 阅读
特斯拉自动驾驶让撞车几率大降40%?水分不小

苹果自动驾驶成绩虽然最差 但怎么改进对苹果来说是小意思

自动驾驶公司大本营的加利福尼亚州,其交通管理局公布了《2018接管报告》,该报告汇集了各公司根据要求....
发表于 02-18 16:36 143次 阅读
苹果自动驾驶成绩虽然最差 但怎么改进对苹果来说是小意思

百度Apollo作为中国自动驾驶领军者 更应在本土深耕

众所周知,受益于“科技圣地”硅谷的地缘优势,阳光明媚的美国加州,成为全球自动驾驶企业的“公共耕地”。....
发表于 02-18 16:32 238次 阅读
百度Apollo作为中国自动驾驶领军者 更应在本土深耕

探析自动驾驶规划控制发展现状及热点研究

对自动驾驶而言,传感器、感知、地图定位和规划控制是目前研究的热点,本文奇点汽车美研中心首席科学家兼总....
的头像 智车科技 发表于 02-18 16:29 739次 阅读
探析自动驾驶规划控制发展现状及热点研究

NI汽车测试解决方案的核心竞争力分析

也许你听过斯巴鲁借助NI软硬件平台,将总测试时间减少了94%的成功案例。在汽车智能化、电气化与网联化....
的头像 恩艾NI知道 发表于 02-18 15:57 461次 阅读
NI汽车测试解决方案的核心竞争力分析

盘点边缘侧人工智能市场规模增长

人工智能是引领未来的战略性技术,是新一轮科技革命和产业变革的重要驱动力量,已经成为国际竞争的新焦点和....
的头像 电子发烧友网工程师 发表于 02-18 15:30 518次 阅读
盘点边缘侧人工智能市场规模增长

Argo AI遭遇“资金饥渴”,大众“祭出”AID筹码

今年开春,全球自动驾驶及汽车行业投资呈现“火热”景象。通用汽车正考虑对电动汽车初创企业Rivian进....
的头像 高工智能汽车 发表于 02-18 15:27 1351次 阅读
Argo AI遭遇“资金饥渴”,大众“祭出”AID筹码

自动驾驶汽车时代:天线测量与模拟比任何时候都来得关键

自动驾驶汽车和互联汽车的出现对无线连接测试领域提出了更高要求,尤其是汽车产业正在推行的汽车到万物(V2X)技术。这项前沿技...
发表于 01-08 10:53 318次 阅读
自动驾驶汽车时代:天线测量与模拟比任何时候都来得关键

555定时器构成汽车转向灯电路

谁能帮忙分析一下电路工作原理 感谢  可以有偿...
发表于 12-29 17:59 396次 阅读
555定时器构成汽车转向灯电路

【转】新能源汽车用磁性材料——共模滤波电感

资料来自网络资源基本内容  ·电动汽车的电气单元与EMI  ·共模电感的设计要点与关键参数  ·...
发表于 12-28 22:37 416次 阅读
【转】新能源汽车用磁性材料——共模滤波电感

主流深度学习框架比较

DL:主流深度学习框架多个方向PK比较
发表于 12-26 11:10 190次 阅读
主流深度学习框架比较

Win10系统进行深度学习时系统C盘满了,正确卸载一些非必要的内容的方法

C盘:当Win10系统进行深度学习的时候发现系统C盘满了,大神教你如何正确卸载一些非必要的内容——Jason niu...
发表于 12-26 10:45 146次 阅读
Win10系统进行深度学习时系统C盘满了,正确卸载一些非必要的内容的方法

深度学习框架TensorFlow&TensorFlow-GPU详解

TensorFlow&TensorFlow-GPU:深度学习框架TensorFlow&TensorFlow-GPU的简介、安装、使用方法详细攻略...
发表于 12-25 17:21 215次 阅读
深度学习框架TensorFlow&TensorFlow-GPU详解

计算机视觉神经网络资料全集

CV之YOLOv3:深度学习之计算机视觉神经网络Yolov3-5clessses训练自己的数据集全程记录(第二次)——Jason niu...
发表于 12-24 11:52 213次 阅读
计算机视觉神经网络资料全集